References
Andersson, U., & Lyxell, B. (2007). Working memory deficit in children with mathematical difficulties: A general or specific deficit? Journal of Experimental Child Psychology, 96(3), 197–228. https://doi.org/10.1016/j.jecp.2006.10.001
Aunio, P., Korhonen, J., Ragpot, L., Törmänen, M., & Henning, E. (2021). An early numeracy intervention for first-graders at risk for mathematical learning difficulties. Early Childhood Research Quarterly, 55, 252–262. https://doi.org/10.1016/j.ecresq.2020.12.002
Aunio, P., Korhonen, J., Ragpot, L., Törmänen, M., Mononen, R., & Henning, E. (2019). Multi-factorial approach to early numeracy—The effects of cognitive skills, language factors and kindergarten attendance on early numeracy performance of South African first graders. International Journal of Educational Research, 97, 65–76. https://doi.org/10.1016/j.ijer.2019.06.011
Aunio, P., & Niemivirta, M. (2010). Predicting children’s mathematical performance in grade one by early numeracy. Learning and Individual Differences, 20(5), 427–435. https://doi.org/10.1016/j.lindif.2010.06.003
Baddeley, A. D., & Logie, R. H. (1999). Working memory: The multiple-component model. In Models of working memory: Mechanisms of active maintenance and executive control (pp. 28–61). Cambridge University Press. https://doi.org/10.1017/CBO9781139174909.005
Brankaer, C., Ghesquière, P., & De Smedt, B. (2017). Symbolic magnitude processing in elementary school children: A group administered paper-and-pencil measure (SYMP Test). Behavior Research Methods, 49(4), 1361–1373. https://doi.org/10.3758/s13428-016-0792-3
Butterworth, B. (2005). Developmental Dyscalculia. In Handbook of Mathematical Cognition (pp. 455–467). Psychology Press.
Cañizares, D. C., Crespo, V. R., & Alemañy, E. G. (2012). Symbolic and non-symbolic number magnitude processing in children with developmental dyscalculia. The Spanish Journal of Psychology, 15(3), 952–966. https://doi.org/10.1016/j.jecp.2008.12.006
Chow, J. C., & Ekholm, E. (2019). Language domains differentially predict mathematics performance in young children. Early Childhood Research Quarterly, 46, 179–186. https://doi.org/10.1016/j.ecresq.2018.02.011
Chow, J. C., Majeika, C. E., & Sheaffer, A. W. (2021). Language skills of children with and without mathematics difficulty. Journal of Speech, Language, and Hearing Research, 64(9), 3571–3577. https://doi.org/10.1044/2021_JSLHR-20-00378
Chu, F. W., vanMarle, K., & Geary, D. C. (2016). Predicting children’s reading and mathematics achievement from early quantitative knowledge and domain-general cognitive abilities. Frontiers in Psychology, 7, 775. https://doi.org/10.3389/fpsyg.2016.00775
Cross, A. M., Joanisse, M. F., & Archibald, L. M. D. (2019). Mathematical abilities in children with developmental language disorder. Language, Speech, and Hearing Services in Schools, 50(1), 150–163. https://doi.org/10.1044/2018_LSHSS-18-0041
David, C. V. (2012). Working memory deficits in Math learning difficulties: A meta-analysis. International Journal of Developmental Disabilities, 58(2), 67–84. https://doi.org/10.1179/2047387711Y.0000000007
De Smedt, B., & Gilmore, C. K. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108(2), 278–292. https://doi.org/10.1016/j.jecp.2010.09.003
De Smedt, B., Noël, M.-P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48–55. https://doi.org/10.1016/j.tine.2013.06.001
Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361. https://doi.org/10.1016/S0166-2236(98)01263-6
Desoete, A., Ceulemans, A., Weerdt, F. D., & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. British Journal of Educational Psychology, 82(1), 64–81. https://doi.org/10.1348/2044-8279.002002
Donker, M., Kroesbergen, E., Slot, E., Van Viersen, S., & De Bree, E. (2016). Alphanumeric and non-alphanumeric Rapid Automatized Naming in children with reading and/or spelling difficulties and mathematical difficulties. Learning and Individual Differences, 47, 80–87. https://doi.org/10.1016/j.lindif.2015.12.011
Engle, R. W. (2018). Working memory and executive attention: A revisit. Perspectives on Psychological Science, 13(2), 190–193. https://doi.org/10.1177/1745691617720478
Friso-van den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29–44. https://doi.org/10.1016/j.edurev.2013.05.003
Geary, D. C. (2011). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. Journal of Developmental and Behavioral Pediatrics: JDBP, 32(3), 250–263. https://doi.org/10.1097/DBP.0b013e318209edef
Geary, D. C., Hoard, M. K., Nugent, L., & Bailey, D. H. (2012). Mathematical cognition deficits in children with learning disabilities and persistent low achievement: A five-year prospective study. Journal of Educational Psychology, 104(1), 206–223. https://doi.org/10.1037/a0025398
Gersten, R., Jordan, N. C., & Flojo, J. R. (2005). Early identification and interventions for students with mathematics difficulties. Journal of Learning Disabilities, 38(4), 293–304. https://doi.org/10.1177/00222194050380040301
Hassinger-Das, B., Jordan, N. C., Glutting, J., Irwin, C., & Dyson, N. (2014). Domain-general mediators of the relation between kindergarten number sense and first-grade mathematics achievement. Journal of Experimental Child Psychology, 118, 78–92. https://doi.org/10.1016/j.jecp.2013.09.008
Huijsmans, M. D. E., Kleemans, T., & Kroesbergen, E. H. (2022). The cognitive profiles for different samples of mathematical learning difficulties and their similarity to typical development: Evidence from a longitudinal study. Journal of Experimental Child Psychology, 214, 105288. https://doi.org/10.1016/j.jecp.2021.105288
Jordan, N. C., Kaplan, D., & Hanich, L. B. (2002). Achievement growth in children with learning difficulties in mathematics: Findings of a two-year longitudinal study. Journal of Educational Psychology, 94(3), 586–597. https://doi.org/10.1037/0022-0663.94.3.586
Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45(3), 850–867. https://doi.org/10.1037/a0014939
Klausen, T., & Reikerås, E. (2016). Regnefaktaprøven. Lesesenteret, University of Stavanger, Norway.
Koponen, T., Aro, M., Poikkeus, A.-M., Niemi, P., Lerkkanen, M.-K., Ahonen, T., & Nurmi, J.-E. (2018). Comorbid fluency difficulties in reading and math: Longitudinal stability across early grades. Exceptional Children, 84(3), 298–311. https://doi.org/10.1177/0014402918756269
Koponen, T., Aunola, K., & Nurmi, J.-E. (2019). Verbal counting skill predicts later math performance and difficulties in middle school. Contemporary Educational Psychology, 59, 101803. https://doi.org/10.1016/j.cedpsych.2019.101803
Koponen, T., Eklund, K., & Salmi, P. (2018). Cognitive predictors of counting skills. Journal of Numerical Cognition, 4(2), 410–428. https://doi.org/10.5964/jnc.v4i2.116
Koponen, T., Georgiou, G., Salmi, P., Leskinen, M., & Aro, M. (2017). A meta-analysis of the relation between RAN and mathematics. Journal of Educational Psychology, 109(7), 977–992. https://doi.org/10.1037/edu0000182
Kroesbergen, E. H., & van Dijk, M. (2015). Working memory and number sense as predictors of mathematical (dis-)ability. Zeitschrift Für Psychologie, 223(2), 102–109. https://doi.org/10.1027/2151-2604/a000208
Kyttälä, M., & Lehto, J. E. (2008). Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology of Education, 23(1), 77. https://doi.org/10.1007/BF03173141
Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93(2), 99–125. https://doi.org/10.1016/j.cognition.2003.11.004
LeFevre, J.-A., Fast, L., Skwarchuk, S.-L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 1753–1767. https://doi.org/10.1111/j.1467-8624.2010.01508.x
Lin, X., Peng, P., & Luo, H. (2021). The deficit profile of elementary students with computational difficulties versus word problem-solving difficulties. Learning Disability Quarterly, 44(2), 110–122. https://doi.org/10.1177/0731948719865499
Lopez-Pedersen, A., Mononen, R., Korhonen, J., Aunio, P., & Melby-Lervåg, M. (2021). Validation of an early numeracy screener for first graders. Scandinavian Journal of Educational Research, 65(3), 404–424. https://doi.org/10.1080/00313831.2019.1705901
Mammarella, I. C., Toffalini, E., Caviola, S., Colling, L., & Szűcs, D. (2021). No evidence for a core deficit in developmental dyscalculia or mathematical learning disabilities. Journal of Child Psychology and Psychiatry, 62(6), 704–714. https://doi.org/10.1111/jcpp.13397
Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82(4), 1224–1237. https://doi.org/10.1111/j.1467-8624.2011.01608.x
Mazzocco, M. M. M., & Grimm, K. J. (2013). Growth in Rapid Automatized Naming from Grades K to 8 in children with math or reading disabilities. Journal of Learning Disabilities, 46(6), 517–533. https://doi.org/10.1177/0022219413477475
Mazzocco, M. M. M., Myers, G. F., Lewis, K. E., Hanich, L. B., & Murphy, M. M. (2013). Limited knowledge of fraction representations differentiates middle school students with mathematics learning disability (dyscalculia) versus low mathematics achievement. Journal of Experimental Child Psychology, 115(2), 371–387. https://doi.org/10.1016/j.jecp.2013.01.005
Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291. https://doi.org/10.1037/a0028228
Menon, V. (2016). Working memory in children’s math learning and its disruption in dyscalculia. Current Opinion in Behavioral Sciences, 10, 125–132. https://doi.org/10.1016/j.cobeha.2016.05.014
Mononen, R. (2021). Matteoppdraget 3. Curriculum-based mathematics test for grade 3. Unpublished. University of Oslo.
Mussolin, C., Mejias, S., & Noël, M.-P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115(1), 10–25. https://doi.org/10.1016/j.cognition.2009.10.006
Nosworthy, N., Bugden, S., Archibald, L., Evans, B., & Ansari, D. (2013). A two-minute paper-and-pencil test of symbolic and nonsymbolic numerical magnitude processing explains variability in primary school children’s arithmetic competence. PLOS ONE, 8(7), e67918. https://doi.org/10.1371/journal.pone.0067918
Ostad, S. A. (1998). Developmental differences in solving simple arithmetic word problems and simple number-fact problems: A comparison of mathematically normal and mathematically disabled children. Mathematical Cognition, 4(1), 1–19. https://doi.org/10.1080/135467998387389
Passolunghi, M. C., & Mammarella, I. C. (2010). Spatial and visual working memory ability in children with difficulties in arithmetic word problem solving. European Journal of Cognitive Psychology, 22(6), 944–963. https://doi.org/10.1080/09541440903091127
Pecini, C., Spoglianti, S., Bonetti, S., Di Lieto, M. C., Guaran, F., Martinelli, A., Gasperini, F., Cristofani, P., Casalini, C., Mazzotti, S., Salvadorini, R., Bargagna, S., Palladino, P., Cismondo, D., Verga, A., Zorzi, C., Brizzolara, D., Vio, C., & Chilosi, A. M. (2019). Training RAN or reading? A telerehabilitation study on developmental dyslexia. Dyslexia, 25(3), 318–331. https://doi.org/10.1002/dys.1619
Pina, V., Fuentes, L. J., Castillo, A., & Diamantopoulou, S. (2014). Disentangling the effects of working memory, language, parental education, and non-verbal intelligence on children’s mathematical abilities. Frontiers in Psychology, 5, 415. https://doi.org/10.3389/fpsyg.2014.00415
Price, G., & Ansari, D. (2013). Dyscalculia: Characteristics, causes, and treatments. Numeracy, 6(1). http://dx.doi.org/10.5038/1936-4660.6.1.2
Purpura, D. J., Day, E., Napoli, A. R., & Hart, S. A. (2017). Identifying domain-general and domain-specific predictors of low mathematics performance: A Classification and regression tree analysis. Journal of Numerical Cognition, 3(2), 365–399. https://doi.org/10.5964/jnc.v3i2.53
Purpura, D. J., & Ganley, C. M. (2014). Working memory and language: Skill-specific or domain-general relations to mathematics? Journal of Experimental Child Psychology, 122, 104–121. https://doi.org/10.1016/j.jecp.2013.12.009
Ramani, G. B., Jaeggi, S. M., Daubert, E. N., & Buschkuehl, M. (2017). Domain-specific and domain-general training to improve kindergarten children’s mathematics. Journal of Numerical Cognition, 3(2), 468–495. https://doi.org/10.5964/jnc.v3i2.31
Raven, J. C., Court, J. H., & Raven, J. (1990). Manual for Raven’s progressive matrices and vocabulary scales: Section 2, Coloured progressive matrices. Oxford University Press.
Rousselle, L., & Noël, M.-P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361–395. https://doi.org/10.1016/j.cognition.2006.01.005
Salihu, L., & Räsänen, P. (2018). Mathematics skills of Kosovar primary school children: A special view on children with mathematical learning difficulties. International Electronic Journal of Elementary Education, 10(4), 421–430. Retrieved from https://iejee.com/index.php/IEJEE/article/view/409
Salminen, J., & Koponen, T. (2011). Oppimisen arviointi: Matematiikan oppimisen seurannan välineet. Käsikirja [LukiMat – Assessment of learning: Progress monitoring of mathematics learning. Manual]. Niilo Mäki Institute.
Semel, E., Wiig, E., & Secord, W. (2003). Clinical Evaluation of Language Fundamentals – Fourth Edition (CELF-4). Norwegian version. Pearson.
Stock, P., Desoete, A., & Roeyers, H. (2010). Detecting children with arithmetic disabilities from kindergarten: Evidence from a 3-year longitudinal study on the role of preparatory arithmetic abilities. Journal of Learning Disabilities, 43(3), 250–268. https://doi.org/10.1177/0022219409345011
ten Braak, D., Lenes, R., Purpura, D. J., Schmitt, S. A., & Størksen, I. (2022). Why do early mathematics skills predict later mathematics and reading achievement? The role of executive function. Journal of Experimental Child Psychology, 214, 105306. https://doi.org/10.1016/j.jecp.2021.105306
The jamovi project. (2021). Jamovi (2.0) [Computer software]. https://www.jamovi.org
Tolar, T. D., Fuchs, L., Fletcher, J. M., Fuchs, D., & Hamlett, C. L. (2016). Cognitive profiles of mathematical problem solving learning sisability for different definitions of disability. Journal of Learning Disabilities, 49(3), 240–256. https://doi.org/10.1177/0022219414538520
Toll, S. W. M., & Van Luit, J. E. H. (2014). Explaining numeracy development in weak performing kindergartners. Journal of Experimental Child Psychology, 124, 97–111. https://doi.org/10.1016/j.jecp.2014.02.001
Van Luit, J. E. H., & Toll, S. W. M. (2018). Associative cognitive factors of math problems in students diagnosed with developmental dyscalculia. Frontiers in Psychology, 9, 1907. https://doi.org/10.3389/fpsyg.2018.01907
Wechsler, D. (2017). WISC-V Wechsler intelligence Scale for Children – fifth edition. Norwegian version.
Willburger, E., Fussenegger, B., Moll, K., Wood, G., & Landerl, K. (2008). Naming speed in dyslexia and dyscalculia. Learning and Individual Differences, 18(2), 224–236. https://doi.org/10.1016/j.lindif.2008.01.003
World Health Organization. (2019). International Statistical Classification of Diseases and Related Health Problems (11th ed.). https://icd.who.int/en
Zhang, X., Räsänen, P., Koponen, T., Aunola, K., Lerkkanen, M.-K., & Nurmi, J.-E. (2020). Early cognitive precursors of children’s mathematics learning disability and persistent low achievement: A 5-year longitudinal study. Child Development, 91(1), 7–27. https://doi.org/10.1111/cdev.13123