References
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.
Alloway, T. P., Gathercole, S. E., Kirkwood, H., & Elliott, J. (2009). The cognitive and behavioral characteristics of children with low working memory. Child Development, 80(2), 606–621. https://doi.org/10.1111/j.1467-8624.2009.01282
Astle, D. E., & Fletcher-Watson, S. (2020). Beyond the core-deficit hypothesis in developmental disorders. Current Directions in Psychological Science, 29(5), 431-437. https://doi.org/10.1177/0963721420925518
Astle, D. E., Bathelt, J., The CALM Team, & Holmes, J. (2019). Remapping the cognitive and neural profiles of children who struggle at school. Developmental Science, 22(1), e12747. https://doi.org/10.1111/desc.12747
Bartelet, D., Ansari, D., Vaessen, A., & Blomert, L. (2014). Cognitive subtypes of mathematics learning difficulties in primary education. Research in Developmental Disabilities, 35, 657–670. https://doi.org/10.1016/j.ridd.2013.12.010
Berch, D. B. (2005). Making sense of number sense: Implications for children with mathematical disabilities. Journal of Learning Disabilities, 38(4), 333-339. https://doi.org/10.1177/00222194050380040901
Borsboom, D., & Cramer, A. O. (2013). Network analysis: an integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91-121. https://doi.org/10.1146/annurev-clinpsy-050212-185608
Butterworth, B. (1999). The Mathematical Brain. London: Macmillan.
Butterworth, B. (2008). Developmental dyscalculia. In J. Reed, & J. Warner-Rogers (Eds.), Child Neuropsychology: Concepts, Theory, And Practice (pp. 357–374). Hoboken, USA: Wiley-Blackwell.
Butterworth, B., Varma, S., Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332, 1049–1053. https://doi.org/10.1126/science.1201536
Capano, L., Minden, D., Chen, S. X., Schachar, R. J., & Ickowicz, A. (2008). Mathematical learning disorder in school-age children with attention-deficit hyperactivity disorder. The Canadian Journal of Psychiatry, 53(6), 392-399. https://doi.org/10.1177/070674370805300609
Cheng, D., Xiao, Q., Chen, Q., Cui, J., & Zhou, X. (2018). Dyslexia and dyscalculia are characterized by common visual perception deficits. Developmental Neuropsychology, 43(6), 497-507. https://doi.org/10.1080/87565641.2018.1481068
Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. (2002).A latent variable analysis of working memory capacity, short–term memory capacity, pro-cessing speed, and general fluid intelligence. Intelligence, 30, 163–183. https://doi.org/10.1016/S0160-2896(01)00096-4
De Smedt, B., & Gilmore, C. K. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108(2), 278-292. https://doi.org/10.1016/j.jecp.2010.09.003
De Smedt, B., Verschaffel, L., & Ghesqui.re, P. (2012). Mathematics learning disability. Boston, USA: Springer
De Visscher, A., & Noël, M. P. (2013). A case study of arithmetic facts dyscalculia caused by a hypersensitivity-to-interference in memory. Cortex, 49(1), 50-70. https://doi.org/10.1016/j.cortex.2012.01.003
David, C. V. (2012). Working memory deficits in math learning difficulties: A meta-analysis. International Journal of Developmental Disabilities, 58(2), 67-84. https://doi.org/10.1179/2047387711Y.0000000007
Davidse, N. J., de Jong, M. T., Shaul, S., & Bus, A. G. (2014). A twin-case study of developmental number sense impairment. Cognitive Neuropsychology, 31(3), 221-236. https://doi.org/10.1080/02643294.2013.876980
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology, 122(3), 371–396. https://doi.org/10.1037/0096-3445.122.3.371
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitve Neuropsychology, 20(3), 487–506. https://doi.org/10.1080/02643290244000 239
Desoete, A. (2007). Students with mathematical disabilities in Belgium: From definition, classification and assessment to STICORDI devices. In T. E. Scruggs & M. A. Mastropieri (Eds.), Advances in learning and behavioral disabilities (pp.181–221). Oxford, UK: Elsevier.
Desoete, A., & De Weerdt, F. (2013). Can executive functions help to understand children with mathematical learning disorders and to improve instruction?. Learning Disabilities, 11(2), 27-39.
Donker, M., Kroesbergen, E., Slot, E., Van Viersen, S., & De Bree, E. (2016). Alphanumeric and non-alphanumeric Rapid Automatized Naming in children with reading and/or spelling difficulties and mathematical difficulties. Learning and Individual Differences, 47, 80–87. https://doi.org/10.1016/j.lindif.2015.12.011
Elliott, L., Feigenson, L., Halberda, J., & Libertus, M. E. (2019). Bidirectional, longitudinal associations between math ability and approximate number system precision in childhood. Journal of Cognition and Development, 20(1), 56-74. https://doi.org/10.1080/15248372.2018.1551218
Friso-van den Bos, I., Kroesbergen, E. H., Van Luit, J. E., Xenidou-Dervou, I., Jonkman, L. M., Van der Schoot, M., & Van Lieshout, E. C. (2015). Longitudinal development of number line estimation and mathematics performance in primary school children. Journal of Experimental Child Psychology, 134, 12-29. https://doi.org/10.1016/j.lindif.2014.05.003
Fonseca-Pedrero, E. (2017). Network analysis: A new way of understanding psychopathology? Revista de Psiquiatría y Salud Mental, 10(4), 206-215. https://doi.org/10.1016/j.rpsmen.2017.10.005
Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsychological, and genetic components. Psychological Bulletin, 114(2), 345. https://doi.org/10.1037/0033-2909.114.2.345
Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4-15. https://doi.org/10.1177/00222194040370010201
Geary, D. C. (2011). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. Journal of Developmental and Behavioral Pediatrics, 32(3), 250–263. https://doi.org/10.1097/DBP.0b013e318209edef
Gelderblom, G. (2010). Effectief omgaan met zwakke rekenaars [Dealing effectively with children with mathematical learning difficulties]. Amersfoort: CPS
Hoffman, B., & Schraw, G. (2009). The influence of self-efficacy and working memory capacity on problem-solving efficiency. Learning and Individual Differences, 19(1), 91-100. https://doi.org/10.1016/j.lindif.2008.08.001
Huijsmans, M. D. E. (2021). Explaining variation in mathematics achievement: Characteristics of children with and without mathematical learning difficulties [Dissertation, Radboud University]. Radboud Repository.
Huijsmans, M. D., Kleemans, T., & Kroesbergen, E. H. (2021). How cognitive strengths compensate weaknesses related to specific learning difficulties in fourth-grade children. Frontiers in Psychology, 12, 363. https://doi.org/10.3389/fpsyg.2021.552458
Huijsmans, M. D., Kleemans, T., & Kroesbergen, E. H. (2022). The cognitive profiles for different samples of mathematical learning difficulties and their similarity to typical development: Evidence from a longitudinal study. Journal of Experimental Child Psychology, 214, 105288. https://doi.org/10.1016/j.jecp.2021.105288
Huijsmans, M. D., Kleemans, T., Van der Ven, S. H., & Kroesbergen, E. H. (2020). The relevance of subtyping children with mathematical learning disabilities. Research in Developmental Disabilities, 104, 103704. https://doi.org/10.1016/j.ridd.2020.103704
Hudziak, J. J., Achenbach, T. M., Althoff, R. R., & Pine, D. S. (2007). A dimensional approach to developmental psychopathology. International Journal of Methods in Psychiatric Research, 16, 16–23. https://doi.org/10.1002/mpr.217
Jordan, N. C., Kaplan, D., Locuniak, M. N., & Ramineni, C. (2007). Predicting first‐grade math achievement from developmental number sense trajectories. Learning Disabilities Research & Practice, 22(1), 36-46. https://doi.org/10.1111/j.1540-5826.2007.00229.x
Karagiannakis, G., Baccaglini-Frank, A., & Papadatos, Y. (2014). Mathematical learning difficulties subtypes classification. Frontiers in Human Neuroscience, 8, 57. https://doi.org/10.3389/fnhum.2014.00057
Kleemans, T., & Segers, E. (2020). Linguistic precursors of advanced math growth in first-language and second-language learners. Research in Developmental Disabilities, 103, 103661. https://doi.org/10.1016/j.ridd.2020.103661
Koriakin, T., White, E., Breaux, K. C., DeBiase, E., O’Brien, R., Howell, M., Costa, M., Liu, X., Pan, X., & Courville, T. (2016). Patterns of cognitive strengths and weaknesses and relationships to math errors. Journal of Psychoeducational Assessment, 35, 155–167. https://doi.org/10.1177/0734282916669909
Kroesbergen, E.H., & Van Dijk, M. (2015). Working memory and number sense as predictors of mathematical (dis-) ability. Zeitschrift für Psychologie, 223, 102–109. https://doi.org/10.1027/ 2151-2604/a000208
Kroesbergen, E.H., Huijsmans, M.D.E., & Friso-van den Bos, I. (2021). Mathematics performance and cognitive characteristics of mathematical learning disabilities: A meta-analysis. Manuscript submitted for publication.
Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93(2), 99-125. https://doi.org/10.1016/j.cognition.2003.11.004
Landerl, K., Fussenegger, B., Moll, K., & Willburger, E. (2009). Dyslexia and dyscalculia: Two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103, 309–324. https://doi.org/10.1016/j.jecp.2009.03.006
Lewis, K. E., & Lynn, D. M. (2018a). Access through compensation: Emancipatory view of a mathematics learning disability. Cognition and Instruction, 36(4), 424-459. https://doi.org/10.1080/07370008.2018.1491581
Lewis, K. E., & Lynn, D. M. (2018b). Against the Odds: Insights from a statistician with dyscalculia. Education Sciences, 8(2), 63. https://doi.org/10.3390/educsci8020063
Lewis, K. E., Sweeney, G., Thompson, G. M., & Adler, R. M. (2020). Integer number sense and notation: A case study of a student with a mathematics learning disability. The Journal of Mathematical Behavior, 59, 100797. https://doi.org/10.1016/j.jmathb.2020.100797
Mammarella, I. C., Caviola, S., Giofrè, D., & Szűcs, D. (2018). The underlying structure of visuospatial working memory in children with mathematical learning disability. British Journal of Developmental Psychology, 36(2), 220-235. https://doi.org/10.1111/bjdp.12202
Mammarella, I. C., Toffalini, E., Caviola, S., Colling, L., & Szűcs, D. (2021). No evidence for a core deficit in developmental dyscalculia or mathematical learning disabilities. Journal of Child Psychology and Psychiatry, 62(6), 704-714. https://doi.org/10.1111/jcpp.13397
Mazzocco, M. M. M. (2007). Defining and differentiating mathematical learning disabilities and difficulties. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (p. 29–47). Baltimore, MD: Brookes Publishers. https://doi.org/10.1097/DBP.0b013e31817aefe8
Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011), Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82, 1224–1237. https://doi.org/10.1111/j.1467-8624.2011.01608
McGrath, L. & Peterson, R., & Pennington, B. (2019). The Multiple Deficit Model: Progress, Problems, and Prospects. Scientific Studies of Reading. 24, 1-7. 10.1080/10888438.2019.1706180
Moeller, K., Fischer, U., Cress, U., & Nuerk, H.-C. (2012). Diagnostics and intervention in developmental dyscalculia: Current issues and novel perspectives. In Z. Breznitz, O. Rubinsten, V.J. Molfese, & D. Molfese, (Eds.) Reading, Writing, Mathematics and the Developing Brain: Listening to Many Voices (pp 233-2753). New York: Springer Publications. https://doi.org/10.1007/978-94-007-4086-0_14
Moeller, K., Neuburger, S., Kaufmann, L., Landerl, K., & Nuerk,H.C. (2009). Basic number processing deficits in developmental discalculia: Evidence from eye tracking. Cognitive Development, 24(4), 371 – 386 https://doi.org/10.1016/j.cogdev.2009.09.007
Moll, K., Kunze, S., Neuhoff, N., Bruder, J., & Schulte-Körne, G. (2014). Specific learning disorder: Prevalence and gender differences. PLoS one, 9(7), e103537. https://doi.org/10.1371/journal.pone.0103537
Morsanyi, K., van Bers, B. M., O’Connor, P. A., & McCormack, T. (2018). Developmental dyscalculia is characterized by order processing deficits: Evidence from numerical and non-numerical ordering tasks. Developmental Neuropsychology, 43(7), 595-621. https://doi.org/10.1080/87565641.2018.1502294
Murphy, M. M., Mazzocco, M. M., Hanich, L. B., & Early, M. C. (2007). Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to define MLD. Journal of Learning Disabilities, 40(5), 458–478. https://doi.org/10.1177/00222194070400050901
Passolunghi, M. C., & Siegel, L. S. (2004). Working memory and access to numerical information in children with disability in mathematics. Journal of Experimental Child Psychology, 88(4), 348–367. https://doi.org/10.1016/j.jecp.2004.04.002
Peng, P., Congying, S., Beilei, L., & Sha, T. (2012). Phonological storage and executive function deficits in children with mathematics difficulties. Journal of Experimental Child Psychology, 112(4), 452-466. https://doi.org/10.1016/j.jecp.2012.04.004
Peng, P., & Fuchs, D. (2016). A meta-analysis of working memory deficits in children with learning difficulties: Is there a difference between verbal domain and numerical domain?. Journal of Learning Disabilities, 49(1), 3-20. . https://doi.org/10.1177/0022219414521667
Peng, P., & Kievit, R. A. (2020). The development of academic achievement and cognitive abilities: A bidirectional perspective. Child Development Perspectives, 14(1), 15-20. https://doi.org/10.1111/cdep.12352
Peng, P., Wang, C., & Namkung, J. (2018). Understanding the cognition related to mathematics difficulties: A meta-analysis on the cognitive deficit profiles and the bottleneck theory. Review of Educational Research, 88(3), 434-476. https://doi.org/10.3102/0034654317753350
Pennington, B. F. (2006). From single to multipled models of developmental disorders. Cognition, 101, 385–413. https://doi.org/10.1016/j.cognition.2006.04.008
Peters, L., & Ansari, D. (2019). Are specific learning disorders truly specific, and are they disorders?. Trends in Neuroscience and Education, 17, 100115. https://doi.org/10.1016/j.tine.2019.100115.
Peters, L., de Beeck, H. O., & De Smedt, B. (2020). Cognitive correlates of dyslexia, dyscalculia and comorbid dyslexia/dyscalculia: Effects of numerical magnitude processing and phonological processing. Research in Developmental Disabilities, 107, 103806.
Pieters, S., Roeyers, H., Rosseel, Y., Van Waelvelde, H., & Desoete, A. (2015). Identifying subtypes among children with developmental coordination disorder and mathematical learning disabilities, using model-based clustering. Journal of Learning Disabilities, 48(1), 83-95. https://doi.org/10.1177/0022219413491288
Posner, M. I., Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42. https://doi.org/10.1146/annurev.ne.13.030190.000325
Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and individual differences, 20(2), 110-122. https://doi.org/10.1016/j.lindif.2009.10.005
Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361-395. https://doi.org/10.1016/j.cognition.2006.01.005
Ruijssenaars, A. J. J. M., Van Luit, J. E. H., Van Lieshout, E. C. D. M., Kroesbergen, E.H. (2021). Handboek Dyscalculie en Rekenproblemen. Een dynamisch ontwikkelingsperspectief [Manual for Dyscalculia and Mathematical Learning Difficulties. A Dynamic Developmental Perspective]. Rotterdam, the Netherlands: Lemniscaat.
Salvador, L., Moura, R., Wood, G., & Haase, V. G. (2019). Cognitive heterogeneity of math difficulties: A bottom-up classification approach. Journal of Numerical Cognition, 5, 55–85. https://doi.org/10.5964/jnc.v5i1.60
Sasanguie, D., Lyons, I. M., De Smedt, B., & Reynvoet, B. (2017). Unpacking symbolic number comparison and its relation with arithmetic in adults. Cognition, 165, 26–38. https://doi.org/10.1016/j.cognition.2017.04.007
Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), 1-16. https://doi.org/10.1111/desc.12372
Schwenk, C., Sasanguie, D., Kuhn, J. T., Kempe, S., Doebler, P., & Holling, H. (2017). (Non-) symbolic magnitude processing in children with mathematical difficulties: A meta-analysis. Research in Developmental Disabilities, 64, 152-167. https://doi.org/10.1016/j.ridd.2017. 03.003
Shalev R. S. (2004). Developmental dyscalculia. Journal of Child Neurology, 19(10), 765–771. https://doi.org/10.1111/j.1469-8749.2005.tb01100.
Simmons, F. R., & Singleton, C. (2008). Do weak phonological representations impact on arithmetic development? A review of research into arithmetic and dyslexia. Dyslexia, 14(2), 77–94. https://doi.org/10.1002/dys.341
Slot, E. M., van Viersen, S., de Bree, E. H., & Kroesbergen, E. H. (2016). Shared and unique risk factors underlying mathematical disability and reading and spelling disability. Frontiers in Psychology, 7, 1–12. https://doi.org/10.3389/fpsyg.2016.0080
Szűcs, D. (2016). Subtypes and comorbidity in mathematical learning disabilities: Multidimensional study of verbal and visual memory processes is key to understanding. Progress in Brain Research, 227, 277-304. https://doi.org/10.1016/bs.pbr.2016.04.027
Szűcs, D., Devine, A., Soltész, F., Nobes, A., & Gabriel, F. (2013). Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex, 49, 2674–2688. https://doi.org/10.1016/j.cortex.2013.06.007
Szumski, G., & Karwowski, M. (2019). Exploring the Pygmalion effect: The role of teacher expectations, academic self-concept, and class context in students’ math achievement. Contemporary Educational Psychology, 59, 101787. https://doi.org/10.1016/j.cedpsych.2019.101787
Träff, U., Olsson, L., Östergren, R., & Skagerlund, K. (2017). Heterogeneity of developmental dyscalculia: Cases with different deficit profiles. Frontiers in Psychology, 7, 2000. https://doi.org/10.3389/fpsyg.2016.02000
Träff, U., Olsson, L., Östergren, R., & Skagerlund, K. (2020). Development of early domain-specific and domain-general cognitive precursors of high and low math achievers in grade 6. Child Neuropsychology, 26(8), 1065-1090. https://doi.org/10.1080/09297049.2020.1739259
Van Luit, J. E. H. (2019). Diagnostics of dyscalculia. In A. Fritz, V. Haase, & P. R.s.nen (Eds.), International Handbook of Mathematical Learning Difficulties. Cham: Springer.
Van Luit, J. E. H., & Toll, S. W. M. (2018). Associative cognitive factors of math problems in students diagnosed with developmental dyscalculia. Frontiers in Psychology, 9, 1–9. https://doi.org/10.3389/fpsyg.2018.01907
Van Viersen, S., Slot, E. M., Kroesbergen, E. H., Van't Noordende, J. E., & Leseman, P. P. M. (2013). The added value of eye-tracking in diagnosing dyscalculia: A case study. Frontiers in Psychology, 4, 679. https://doi.org/10.3389/fpsyg.2013.00679
Vaughn, S., & Fuchs, L. S. (2003). Redefining learning disabilities as inadequate response to instruction: The promise and potential problems. Learning Disabilities Research & Practice, 18(3), 137-146. https://doi.org/10.1111/1540-5826.00070
Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45(1), 2–40. https://doi.org/10.1046/ j.0021-9630.2003.00305
Willburger, E., Fussenegger, B., Moll, K., Wood, G., & Landerl, K. (2008). Naming speed in dyslexia and dyscalculia. Learning and Individual Differences, 18(2), 224–236. :10.1016/j.lindif.2008.01.003
Wilkey, E. D., Pollack, C., & Price, G. R. (2020). Dyscalculia and typical math achievement are associated with individual differences in number-specific executive function. Child Development, 91(2), 596-619. https://doi.org/10.1111/cdev.13194
World Health Organization. (2018). International classification of diseases for mortality and morbidity statistics (11th Revision). Retrieved from https://icd.who.int/browse11/l-m/en
Zhao, Y., Castellanos, F. X. (2016). Annual research review: Discovery science strategies in studies of the pathophysiology of child and adolescent psychiatric disorders - promises and limitations. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 57, 421–439. https://doi.org/10.1111/jcpp.12503