Abstract
The abstract nature of mathematical concepts makes that their representation through different registers favours their understanding. In the case of 'Sequences and Regularities', it becomes propitious the exploration of different registers of representation in the institution of topics, such as term, order, formation law and generating expression. Considering these assumptions, a teaching experiment was carried out in order to understand the contribution of multiple representations in the learning of 'Sequences and Regularities' by 3rd grade students. Adopting a qualitative methodology, the study shows that students initially presented a smaller variety of representations, which increased during the teaching experience. Students revealed a greater preference for pictorial representations and made explicit connections between different representations throughout their resolutions. Pictorial representations and tables allowed close and distant generalizations, the determination of the formation law and the generating expression. The greatest difficulties of the students resulted from the interpretation of the statements of the proposed tasks, that was also evident in the representation (natural language), which revealed a greater number of incorrect answers. This result tends to reveal that some students still have difficulties in justifying their reasoning, either in writing or orally.
Listen -
References
Almeida, C., & Author, F. (2002). Interpretação gráfica das derivadas de uma função por professores estagiários de Matemática. Revista Portuguesa de Educação, 15(1), 193-219.
Alvarenga, D., & Vale, I. (2007). A exploração de problemas de padrão: Um contributo para o desenvolvimento do pensamento algébrico. Quadrante, 15(1), 27-55. https://doi.org/10.48489/quadrante.22813
Baratta-Lorton, B. (2009). Patterns & Connections in mathematics (manuscript). Center for Innovation in Education. http://www.center.edu/Patterns_Connections.shtml.
Bogdan, R., & Biklen, S. (1994). Investigação qualitativa em educação. Porto Editora.
Borralho, A., Cabrita, I., Palhares, P., & Vale, I. (2007). Os padrões no ensino e aprendizagem da Álgebra. In I. Vale, T. Pimentel, A. Barbosa, L. Fonseca, L. Santos, & P. Canavarro (Eds.), Números e Álgebra na aprendizagem da Matemática e na formação de professores (pp. 193-211). SEM-SPCE.
Branco, N. (2008). O estudo de padrões e regularidades no desenvolvimento do pensamento algébrico. Dissertação de Mestrado, Universidade de Lisboa.
Canavarro, A. P., & Pinto, M. E. (2012). O raciocínio matemático aos seis anos: Características e funções das representações dos alunos. Quadrante, Vol. XXI, 2, 51-79.
Carraher, D. W., & Schliemann, A. D. (2007). Early algebra and algebraic reasoning. In F. Lester (Ed.), Second Handbook of Mathematics Teaching and Learning (pp. 669- 705). Information Age.
Devlin, K. (2002). Matemática: a ciência dos padrões. Porto Editora.
Dufour-Janvier. B., Bednarz, N., & Belanger, M. (1987). Pedagogical considerations the problem of representation. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 109-122). Lawerence Erlbaum Associates Publishers.
Duval, R. (2012). Registros de representação semiótica e funcionamento cognitivo do pensamento. REVEMAT, 7(2), 266-297. https://doi.org/10.5007/1981-1322.2012v7n2p266.
Goldin, G. A. (2008). Perspectives on representation in mathematical learning and problema solving. In L. English (Ed.), Handbook of International Research in Mathematics Education (pp. 176-200). Routledge.
Goldin, G. A. (2000). Representational systems, learning, and problem solving in mathematics. Journal of Mathematical Behavior, 17(2), 137-165. https://doi.org/10.1016/S0364-0213(99)80056-1.
Goldin, G. A., & Kaput, J. J. (1996). A Joint perspective on the idea of representation in learning and doing mathematics. In L. P. Steffe, P. Nesher, P. Cobb, G. A. Goldin, & B. Greer (Eds.), Theories of Mathematical Learning (pp. 397-429). Lawrence Erlbaum Associates.
Lannin, J. (2003). Developing algebraic reasoning through generalization. Mathematics Teaching in the Middle School, 342-348.
Lannin, J., Ellis, A., & Elliot, R. (2011). Developing essential understanding of mathematical reasoning for teaching mathematics in Prekindergarten — Grade 8. NCTM.
Ministério da Educação e Ciência [MEC] (2016). Orientações de gestão curricular para o Programa e Metas Curriculares de Matemática Ensino Básico. Direção Geral da Educação do MEC.
National Council of Teachers of Mathematics [NCTM] (2007). Princípios e normas para a matemática escolar. APM.
Orton, A. (Ed.) (1999). Pattern in the teaching and learning of mathematics. Cassell.
Piaget, J. (1990). A formação do símbolo na criança. LTC- Livros Técnicos e Científicos.
Pimentel, T., Vale, I., Freire, F., Alvarenga, D., & Fão, A. (2010). Matemática nos primeiros anos - Tarefas e desafios para a sala de aula. Texto Editores.
Ponte, J. P. (2005). Álgebra no currículo escolar. Educação e Matemática, 85, 36–42.
Ponte, J. P., Branco, N., & Matos, A. (2009). Álgebra no Ensino Básico. ME- DGIDC.
Ponte, J. P., & Velez, I. (2011). Representações em tarefas algébricas no 1.° Ciclo. Educação e Matemática, 113, 11-16.
Radford, L. (2010). Layers of generality and types of generalization in pattern activities. PNA - Revista de Investigación en Didáctica de la Matemática, 4(2), 37-62.
Rivera, F., & Becker, J. R. (2009). Algebraic reasoning through patterns: Findings, insights, and issues drawn from a three-year study on patterns are intended to help teach prealgebra and algebra. Mathematics Teaching in the Middle School, 15(4), 213-221.
Rivera, F., & Becker, J. R. (2008). Middle school children's cognitive perceptions of constructive and deconstructive generalizations involving linear figural patterns. ZDM, 40, 65-82. https://doi.org/10.1007/s11858-007-0062-z.
Saraiva, M. J., & Pereira, M. N. (2010). A escrita simbólica de uma generalização. Educação e Matemática, 107, 28-35.
Sawyer, W. (1995). Prelude to mathematics. Penguim Books.
Steen, L. A. (1998). The science of patterns. Science, 240, 611-616.
Vale, I. (2009). Das tarefas com padrões visuais à generalização. In J. Fernandes, H. Martinho, & F. Viseu (Orgs.), Actas do XX Seminário de Investigação Matemática (pp. 35-63). APM.
Vale, I., & Pimentel, T. (2010). Padrões e conexões matemáticas no Ensino Básico. Educação e Matemática, 110, 33-38.
Author, F., Pires, A. L., Menezes, L., & Costa, A. M. (2021). Semiotic representations in the learning of rational numbers by 2nd grade portuguese students. International Electronic Journal of Elementary Education, 13(5), 611-624.
Vygotsky, L. S. (2008). Pensamento e Linguagem. Relógio D'Água.
Warren, E. (2009). Patterns and relationships in the elementary classroom. In I. Vale, & A. Barbosa (Orgs.), Padrões: Múltiplas perspectivas e contextos em educação matemática (pp. 29-47). Escola Superior de Educação do Instituto Politécnico de Viana do Castelo.
Warren, E. (2005). Patterns supporting the development of early algebraic thinking. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.538.4964&rep=rep1&type=pdf.
Webb, D. C., Boswinkel, N., & Dekker, T. (2008). Beneath the tip of the iceberg: Using representations to support student understanding. Mathematics Teaching in the Middle School, 14(2), 8-12.