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Abstract

This study investigated which domain-specific and domain-
general skills measured at grade 1 predict mathematical 
learning difficulties (MLD) status at grade 3. We used different 
cut-off criteria and measures of mathematics performance 
for defining the MLD status. Norwegian children’s (N = 206) 
numeracy, cognitive, and language skills were measured 
at grade 1 and arithmetic fluency and curriculum-based 
mathematics (CBM) at grade 3. Logistic regression analyses 
showed that symbolic numerical magnitude processing, 
verbal counting, and rapid automatized naming predicted 
MLD25 status (performance ≤ 25th percentile) based on 
arithmetic fluency, whereas verbal counting skills and 
nonverbal reasoning predicted the status based on CBM. 
The same predictors were found for MLD10 status 
(performance ≤ 10th percentile), and in addition, rapid 
automatized naming also predicted the status based on 
CBM. Only symbolic numerical magnitude processing 
and verbal counting predicted LOW status (performance 
between 11–25th percentile) based on arithmetic fluency, 
whereas nonverbal reasoning and working memory 
predicted LOW status based on CBM. Different cut-off 
scores and mathematics measures used for the definition 
of MLD status are important to acknowledge, as these seem 
to lead to relatively significant variation in which students 
are identified as having MLD and which factors contribute 
to the MLD status.

Introduction

Individual differences in mathematics learning and 
performance in the beginning of schooling are well-

acknowledged (Aunio & Niemivirta, 2010; Jordan et al., 
2009; ten Braak et al., 2022; Zhang et al., 2020). Children 
in early grades are rarely formally diagnosed as having 
developmental learning disorder in mathematics, also 
called dyscalculia, until the effect of teaching has been 
taken into account (ICD-11; World Health Organization, 
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2019). Nonetheless, we can reliably identify students 
who perform weaker in mathematics than their peers 
and show difficulties in their mathematics learning. 
In research literature, different cut-off criteria for 
performance, ranging from 10th to 35th percentile, 
have been used to identify students at risk for or having 
mathematical learning difficulties (MLD) (e.g., Aunio et 
al., 2021; Kroesbergen & van Dijk, 2015; Lin et al., 2021; 
Mazzocco et al., 2013). A wide cut-off range used for 
the definition of MLD leads to an inclusion of a variety 
of performance within MLD; the lower end showing 
more severe difficulties than the upper end. Not until 
recently have the researchers started to show more 
consensus on the terms and cut-off criteria of MLD. 
Individuals performing at the lowest 10th percentile 
are commonly referred to as having mathematical 
disability/disorder or developmental dyscalculia, 
whereas those performing between the 11th and 
25th percentile are referred to as low-performing/
achieving (Geary, 2011). The term mathematical 
learning difficulties, independent of the severity of 
MLD, can then be used as an umbrella term for all 
those performing at or below the 25th percentile.

In addition to the severity criteria, different types 
of mathematics measures are used in research to 
identify students with MLD. Measures of arithmetic 
performance are typically applied (Cañizares et al., 
2012; Koponen, Aro, et al., 2018), as poor arithmetic 
fluency is one of the main characteristics of students 
having MLD (Geary, 2011; Gersten et al., 2005). 
Alternatively, broad mathematics performance 
measures are used (Jordan et al., 2002). Sometimes 
the definition of MLD includes a persistence criterion, 
meaning that the student needs to perform low in 
at least two consecutive time points (Mazzocco 
et al., 2013; Stock et al., 2010). Currently, we have 
little knowledge of the extent to which the different 
mathematics measures overlap in defining MLD. 
That is, would a brief arithmetic fluency measure 
identify the same students as a broader mathematics 
performance test?  

Researchers have also been curious about which 
domain-specific and domain-general skills are related 
to or may contribute to MLD, and whether these differ 
between the subgroups of MLD (Geary et al., 2012; 
Huijsmans et al., 2022; Salihu & Räsänen, 2018). A set of 
domain-specific skills, such as numerical magnitude 
processing (Cañizares et al., 2012; De Smedt & Gilmore, 
2011) and counting skills (Koponen et al., 2019), and 
domain-general skills, such as working memory 
(Menon, 2016; Passolunghi & Mammarella, 2010) and 
rapid automatized naming (Van Luit & Toll, 2018), have 
been found to be related to MLD. However, drawing 
conclusions about their predictive role becomes 
complicated due to the different cut-off criteria for 
MLD and various measures used for the identification 
of students with MLD. 

On one hand, it has been suggested that deficit 
in either numerical magnitude processing (NMP) 
(Butterworth, 2005) or accessing the magnitude in 
symbols (Rousselle & Noël, 2007) underlies the most 
severe MLD (but see Mammarella et al., 2021 for no 
evidence for a core deficit in MLD). On the other hand, 
a persistent low performance in mathematics has 
been suggested to stem from having weaknesses in 
domain-general cognitive skills (e.g., working memory) 
or lacking mathematics motivation (Geary, 2011; Price 
& Ansari, 2013). By contrast, the double deficit model 
suggests that weaknesses in both NMP and working 
memory would be associated with the most severe 
MLD (Kroesbergen & van Dijk, 2015). While there are 
competing theories about the associations between 
domain-specific and domain-general skills and MLD, 
and whether these differ between the subtypes of 
MLD (Geary et al., 2012; Huijsmans et al., 2022; Tolar 
et al., 2016), the empirical evidence has mostly relied 
on cross-sectional data, thus focusing only on the 
concurrent relations between the predictors and 
MLD status (e.g., Cañizares et al., 2012; Passolunghi 
& Mammarella, 2010; Tolar et al., 2016; Van Luit & Toll, 
2018; Willburger et al., 2008). Longitudinal data would 
seem more accurate in identifying the most relevant 
domain-specific and domain-general predictors of 
MLD status. 

Our study adds to the current research by investigating 
which domain-specific and domain-general skills 
measured in the first grade predict MLD status in the 
third grade. The novelty of our study lies in taking 
into consideration different cut-off criteria and 
mathematics measures (i.e., arithmetic fluency and 
curriculum-based mathematics [CBM]) in defining 
the MLD. Further, we include simultaneously several 
domain-specific (i.e., symbolic numerical magnitude 
processing [SNMP] and counting skills) and domain-
general skills (i.e., nonverbal reasoning, working 
memory, rapid automatized naming, and vocabulary) 
as predictors of MLD status. To examine if domain-
specific and domain-general skills predict MLD status 
differently when using different cut-off criteria based 
on the sample-based percentiles, we first divide the 
students into two groups: those who perform at or 
below the 25th percentile are referred to as having 
mathematical learning difficulties (MLD25), while rest 
of the students are referred to as typically performing 
(performance over the 25th percentile). Next, we 
divide the MLD25 group into those who are showing 
more severe difficulties, namely mathematical 
learning disorder (performance at or below the 10th 
percentile, MLD10) and those who are low performing 
(performance between the 11th to 25th percentile, 
LOW). The status of MLD is based separately on 
arithmetic fluency and on CBM. This enables us 
to examine the overlap of MLD statuses based on 
arithmetic fluency and CBM (e.g., how many students 
are classified as MLD25 in both arithmetic fluency and 
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CBM), and whether predictors of MLD status vary as a 
function of mathematics measure (arithmetic fluency 
vs. CBM) and cut-off criteria (10th vs. 25th percentile).

Domain-Specific Skills as Predictors of MLD

Domain-specific skills in mathematics context mean 
different mathematical skills. Here, we focus on two 
such skills, numerical magnitude processing (NMP) and 
counting skills, which have shown to be related to or to 
predict later mathematics performance, concerning 
both the typically performing students and students 
with MLD. NMP is considered to be an innate ability, 
which enables individuals to approximately process 
numerical magnitudes (Dehaene et al., 1998). A 
traditionally used task for measuring NMP is to 
compare two sets of dots, and to quickly decide which 
side has more dots. Even if some studies have shown 
that students with MLD often have poorer NMP skills 
compared to their peers without MLD (Mazzocco et 
al., 2011; Mussolin et al., 2010), there is recent evidence 
showing that symbolic NMP (SNMP) would be even a 
better predictor of mathematics performance and 
more strongly associated with MLD than non-symbolic 
NMP (Cañizares et al., 2012; De Smedt & Gilmore, 2011; 
Desoete et al., 2012; Nosworthy et al., 2013). For this 
reason, we focus in this study on the role of SNMP. The 
tasks often used to measure SNMP are similar to NMP 
comparison tasks, but 1- or 2-digit numbers are used 
as stimuli instead of dots (Brankaer et al., 2017). While 
comparing the numbers, and to choose the bigger 
number, the student needs to access the magnitudes 
of those numbers. A slow response indicates a deficit 
in accessing and processing of the magnitudes 
(Rousselle & Noël, 2007). Concerning school beginners, 
Desoete et al. (2012) found that SNMP measured in 
kindergarten (5–6 years old) was a good predictor 
of procedural calculations (i.e., 34 + 21, or given in as 
“6 more than 48 is…”) in the second grade. Further, 
they found that although children with MLD showed 
weakness in both non-symbolic and symbolic NMP in 
kindergarten, it was only in SNMP they showed a deficit 
in grade 2. Overall, the findings are still mixed when it 
comes to the role of (S)NMP and severity level of MLD. 
Some research supports that students with severe MLD 
are characterized with poor NMP (Mazzocco et al., 
2011), while some research has not found a difference 
between the subgroups of MLD (i.e., MLD10 and LOW) 
(Huijsmans et al., 2022)

Counting skills (i.e., verbal number sequence skills and 
object counting) develop typically parallel with early 
arithmetic skills (i.e.., addition and subtraction), and can 
also be seen as prerequisites for learning arithmetic 
skills, because children often use these as their 
strategies in solving arithmetic calculation problems 
(Koponen et al., 2019). Typically, children with MLD 
use more immature, counting-based strategies, while 
their peers use retrieval strategies, that is, they quickly 

retrieve the answer from long-term memory (Ostad, 
1998). Counting skills have been found to be associated 
with (Lopez-Pedersen et al., 2021) and to predict later 
arithmetic and mathematics performance (Aunio & 
Niemivirta, 2010; Koponen et al., 2019). Furthermore, 
children performing low (Hassinger-Das et al., 2014; Toll 
& Van Luit, 2014) and with severe MLD (Landerl et al., 
2004) have shown weaker counting skills compared to 
their peers.

Domain-General Skills as Predictors of MLD

Several domain-general skills, such as working memory, 
executive functions, rapid automatized naming, and 
language, have been found to be associated with 
mathematics performance and development (Chu 
et al., 2016; Friso-van den Bos et al., 2013; Koponen, 
Eklund, et al., 2018; Purpura & Ganley, 2014), and 
with MLD (Mammarella et al., 2021; Passolunghi & 
Mammarella, 2010; Purpura et al., 2017; Van Luit & Toll, 
2018). Further, separate domain-general cognitive 
profiles depending on the severity level of MLD has 
been suggested (Geary et al., 2012). However, in a 
recent study, Hujsman et al. (2022) did not find support 
for this. In their study, the severity of MLD did not result 
in differences in the cognitive profiles, and further, the 
cognitive profiles for mathematics development from 
fourth to fifth grade were rather similar between the 
students with MLD and typically performing students.

Nonverbal reasoning (also called as nonverbal or 
fluid intelligence) has been shown to be a consistent 
predictor of mathematics performance in different 
age groups of students (Kyttälä & Lehto, 2008; Pina 
et al., 2014). Good nonverbal reasoning skills are 
an advantage in solving mathematical problems, 
because students need to be able to make logical 
decisions and to proceed systematically with the task 
(e.g., entertain their solutions and if proven false try a 
new solution) (Engle, 2018). Students with MLD typically 
perform weaker in nonverbal reasoning, albeit within 
normal range, compared to their peers without MLD 
(Huijsmans et al., 2022). 

Solving mathematics tasks requires working 
memory capacity for storing and manipulating 
information temporarily. Working memory and its 
different components (i.e., visuo-spatial sketchpad, 
phonological loop, central executive) have all been 
linked with mathematics performance (Friso-van den 
Bos et al., 2013). Students with MLD have been reported 
to show weaker working memory performance than 
their peers (Kroesbergen & van Dijk, 2015; Passolunghi & 
Mammarella, 2010). Huijsmans et al. (2022) found that 
those with low performance were characterized by 
difficulties in visual working memory, but interestingly, 
not those with severe MLD. However, working memory 
did not explain any variance in the mathematics 
development from fourth to fifth grade (Huijsmans 
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et al., 2022). Our study, instead, focuses on the 
central executive component of working memory 
(i.e., manipulation of information). Prior research has 
shown that students with MLD have a deficit in their 
central executive functioning, and especially when 
central executive has been measured with numerical 
stimuli (Andersson & Lyxell, 2007; for a meta-analysis 
see David, 2012).  

Rapid automatized naming (i.e., quickly naming 
familiar non-alphanumeric objects such as colors 
and figures, or alphanumeric objects such as letters 
or numbers) has been found to be more strongly 
related to arithmetic fact retrieval than to more 
general mathematics performance (for a meta-
analysis see Koponen et al., 2017). Rapid automatized 
naming (e.g., naming a color) and fact retrieval (e.g., 
5 + 3) both require quick access to and retrieval of 
phonological representations from long-term memory 
(“blue” and “eight”, respectively) (Koponen et al., 2017). 
Concerning students with MLD, Donker et al. (2016) 
found that primary school-aged students had weaker 
performance in non-alphanumeric rapid automatized 
naming (e.g., colors) compared to their peers, but not in 
alphanumeric format (e.g., letters). Further, Mazzocco 
and Grimm (2013) found in their longitudinal study from 
kindergarten to grade 8 that those with LOW showed 
slight delays (i.e., slower response times) in naming of 
colors compared to their TYP peers, whereas those 
with severe MLD showed more persistent weakness 
in rapid naming of letters and colors. Based on prior 
findings that rapid naming of colors can be a good 
early predictor of mathematics performance and 
especially arithmetic fact retrieval (Koponen et al., 
2017), and associated with MLD (Donker et al., 2016; 
Mazzocco & Grimm, 2013), in our study, we chose 
to have rapid naming of colors as a proxy for rapid 
automatized naming.

 In early childhood, language skills have been linked 
with mathematics performance (Aunio et al., 2019), 
and especially mathematics related language to 
be a good predictor of low performance (Purpura et 
al., 2017), as well as influencing the development of 
early mathematical skills of LOW (Toll & Van Luit, 2014). 
In our study, we focus on vocabulary (expressive) in 
general, which has shown to play a role in children’s 
mathematics learning (LeFevre et al., 2010). However, 
also conflicting results have been reported among 
school beginners, that is, no connection between      
vocabulary (receptive) and mathematics performance 
(Chow & Ekholm, 2019). Vocabulary is needed not only 
to understand mathematics teaching in general, but 
also to communicate using different mathematics 
concepts (e.g., comparison words, number words, 
geometrical object, words for operations [e.g., plus, 
minus]. Support for the importance of language in 
mathematics learning comes from studies, which 
have included students with developmental language 

disorder. In general, these students have consistently 
shown weaker mathematics performance compared 
to their peers in mathematical tasks that require 
expressing or understanding of language (e.g., verbal 
number sequences, counting of objects, arithmetic) 
while they have shown similar performance to their 
TYP peers in mathematics tasks with less demand on 
language (e.g., NMP, conceptual mathematics tasks) 
(for a review see Cross et al., 2019). Not many studies 
have investigated the role of different components 
of language among students with MLD. However, 
recently, Chow et al. (2021) showed that students 
with MLD (performance below 20th percentile on 
arithmetic fluency) performed lower than their peers 
in receptive vocabulary, morphology, and syntax.

Present Study

The present study expands on previous research by 
investigating how domain-specific and domain-
general skills measured in the first grade predict MLD 
status among third graders when different cut-off 
criteria and measures of mathematics performance 
are used. Our research questions are as follows:

(RQ1) What is the overlap of MLD statuses based 
on arithmetic fluency and curriculum-based 
mathematics?

(RQ2) How do domain-specific (i.e., symbolic 
numerical magnitude processing and verbal counting 
skills) and domain-general (non-verbal reasoning, 
rapid automatized naming, working memory, and 
vocabulary) skills predict MLD status when using the 
25th percentile cut-off criterion (MLD25) based on 
either arithmetic fluency (RQ2.1) or curriculum-based 
mathematics (RQ2.2)?

(RQ3) How do domain-specific and domain-general 
skills predict MLD status when further dividing 
the MLD25 into MLD10 (≤ 10th percentile) and low 
performers (LOW; 11–25th percentile) based on 
either arithmetic fluency (RQ3.1) or curriculum-based 
mathematics (RQ3.2)?

Although we have limited evidence available to 
strongly guide our hypothesis for RQ1, we expect 
relatively high overlap of MLD statuses based on 
different mathematics measures, but still distinct 
to a certain degree, as the mathematics content in 
arithmetic fluency is much more limited than in the 
broad CBM measure (H1). 

Based on prior research, we hypothesize that all 
domain-specific and domain-general skills under 
investigation are likely predictors of MLD25 (H2), as this 
group encompasses those with more severe learning 
difficulties (MLD10) and milder learning difficulties 
(LOW). Regarding MLD25 based on arithmetic fluency, 
we expect SNMP (Desoete et al., 2012), counting skills 



339

Predicting Mathematical Learning Difficulties Status / Mononen, Niemivirta & Korhonen

(Hassinger-Das et al., 2014; Landerl et al., 2004) and 
rapid automatized naming (Koponen et al., 2017; 
Mazzocco & Grimm, 2013) to be significant predictors 
(H2.1). Since the tasks in CBM have more variety and 
complexity regarding their mathematics content 
and procedures, thus requiring logical reasoning 
(Engle, 2018), executive functioning (David, 2012), 
and understanding task related vocabulary (Chow 
et al., 2021), we anticipate MLD25 based on CBM to 
be predicted by counting skills (Hassinger-Das et al., 
2014), nonverbal reasoning, working memory, and 
vocabulary (H2.2).

Similar to MLD25 based on arithmetic fluency, we 
expect the two domain-specific skills and rapid 
automatized naming to predict both MLD10 and 
LOW status (H3.1). As to the status based on CBM, we 
presume domain-general skills, especially concerning 
working memory (David, 2012; Huijsmans et al., 
2022), to exhibit different predictions on MLD10 and 
LOW (David, 2012; Huijsmans et al., 2022). Further, we 
expect the significant predictors to include counting 
skills (Hassinger-Das et al., 2014; Landerl et al., 2004), 
nonverbal reasoning (Huijsmans et al., 2022), and 
vocabulary (Chow et al., 2021) (H3.2).

Method

Participants

The current study is part of a research project that 
follows Norwegian children’s numeracy development 
from first to third grade. Here, we use data from its 
first (grade 1, t1) and last (grade 3, t2) measurement 
time points. The final sample of participants was 206 
children (Mage = 6 y. 9 m., SD = 3.4 m., girls 49%), from 
four schools located in the Oslo region, and who had 
data available from both time points. Due to Covid-19 
restrictions in schools in spring 2021, 27 children from 
the initial sample of 265 were not able to participate 
in t2, and 32 children had either moved away or were 
absent from school on the data collection day. An 
ethical approval was given by the Norwegian Centre 
for Research Data before the data collection started, 
and consents for the participation were given by 
children’s legal guardians. 

Measures

Third-grade mathematics performance

Arithmetic fluency was measured using a standardized 
arithmetic test Regnefaktaprøven (Klausen & Reikerås, 
2016). Children have 2 minutes to solve as many 
addition problems as possible out of 45 on one sheet, 
and same for subtraction. As a proxy of arithmetic 
fluency, we combined the sum scores of each subtest, 
thus the maximum possible score being 90 points. 

A curriculum-based mathematics (CBM) test was 
developed in the project (Mononen, 2021) to measure 
children’s overall performance in mathematics 
taught in grade 3. This paper-pencil group-based 
test includes 49 items from the topics of numbers 
(number sequences, comparison of multi-digit 
numbers), measurement (volume, length, money), 
calculations (multiplication facts, addition and 
subtraction algorithms) and fractions, and follows 
the learning outcomes set for the third grade in the 
national mathematics curriculum (ref.). Each task 
was instructed for the children and children worked 
with the tasks independently for 20–25 minutes. Each 
correctly solved item gave one point.

First-grade domain-specific numeracy skills

Symbolic numerical magnitude processing was 
measured using the 1-digit subtest of the SYMP test 
(Brankaer et al., 2017). In this paper-pencil test the child 
has 30 seconds to compare as many 1-digit number 
pairs as possible out of 60, by choosing the bigger 
number. One point is given for a correct answer, thus 
the maximum score being 60.   

Verbal counting skills were measured using a normed 
Finnish LukiMat subscale (Salminen & Koponen, 2011), 
which was translated into Norwegian. The child was 
asked to orally count number sequences forwards and 
backwards, in steps of 1, 2, 5, and 10. Each correctly 
given number sequence gave one point, the possible 
maximum total score being 29 points. 

First-grade domain-general skills

Nonverbal reasoning skills were measured using 
Raven’s progressive colored matrices (Raven et al., 
1990). The child chooses one of the six alternative 
pieces that fits the picture. One point was given for 
each correct answer, the maximum possible score 
being 34, as two first items were practice items.

Working memory was measured using a digit span 
backwards subtest from WISC-V (Wechsler, 2017). 
Digit span backwards captures the central executive 
component of WM, as modelled by Baddeley 
(Baddeley & Logie, 1999). Each digit span, ranging 
from 2–8 numbers, had two tasks, except for 2- and 
3-digit spans having 4 tasks each. Each digit span was 
presented orally to the child forwards and the child 
needed to repeat the digits backwards. Following the 
test guidelines, the test was stopped if the child could 
not give a correct answer for both tasks with the same 
number of digits. The maximum total score was 18 
points. 

Rapid automatised naming was measured using a 
colors subtest from the Clinical Evaluation of Language 
Fundamentals (CELF-4) (Semel et al., 2003). The child 
needs to name 36 colored dots (including colors “gul” 
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[yellow], “grønn” [green], “blå” [blue], “rød” [red]) as 
accurately and fast as possible. For the purpose of 
statistical analyses, we created a composite score, 
in which the correct number of named colors was 
divided by used time, and multiplied by ten. 

Vocabulary was measured using a subtest 
‘Ordforstålse’ of WISC-V (Wechsler, 2017) targeting 
expressive vocabulary. A child needs to either name 
a picture (first 4 items, 1 point for a correct answer), or 
explain the meaning of a word (25 items, giving either 
1 or 2 points depending on the correctness of the 
definition based on the test guidelines). A maximum 
score for the task was 54 points.

Procedure

The first data collection (t1) took place in spring 2019. 
Children came in groups of 8–10 students to the 
data collection site for half a school day. During this 
“adventure day” the children completed a set of 
measures individually and in small groups depending 
on the test format, together with trained research 
assistants. Small breaks were held between the 
sessions. The data collection in the third grade (t2) 
took place in spring 2021. The Covid-19 measures 
set by the Norwegian government restricted the 
data collection so that we were not allowed to visit 
the schools. Instead, one research assistant gave all 
test instructions online via Teams to one classroom 
at a time, and the students in the classroom were 
overlooked by their classroom teacher. The testing 
was done in two sessions of around 45 minutes each, 
during one day. The research assistants had a video 
and audio connections to the classroom. No such 
technical issues were reported that would have 
violated the testing situation and validity of the data. 
Test booklets were delivered to the schools a few days 
before the data collection took place and collected 
after the data collection was completed. 

The data was coded by trained research assistants, 
and data from three randomly chosen students per 
classroom (13%) were double coded by the first author. 
The correlations between the first and second coding 
resulted in correlations of sum scores ranging from r 
= .944–1.00, with coding errors connected to some 
children having few items in a test with non-matching 
values. When needed, the test papers compared 
to the punched values, and the final data matrix 
corrected accordingly.

Data analysis

First, descriptive statistics of and correlations between 
all variables were calculated. Second, grouping 
variables for the MLD status based on sample-
based percentiles both in third grade arithmetic 
fluency and CBM were created. The first grouping 
variable for arithmetic fluency included MLD25 status 

and those performing typically (TYP). The second 
grouping variable for arithmetic fluency included 
MLD10, LOW and TYP. Similar grouping variables were 
created for CBM. To answer for RQ1, we tested with 
a chi-square test what is the overlap of MLD statuses 
based on arithmetic fluency and curriculum-based 
mathematics (e.g., children having a status of LOW 
in both arithmetic fluency and CBM). To answer for 
RQ2 and RQ3, which first-grade domain-specific 
and domain-general skills predict MLD status, we 
conducted two binary logistic regression analyses, 
one for arithmetic fluency and one for CBM, when 
having two status groups (MLD25 and TYP), and two 
multinomial logistic regression analyses when having 
three status groups (MLD10, LOW and TYP). Jamovi 
2.2.2.0 software (The jamovi project, 2021) was used for 
statistical data analyses.

Results

Descriptive statistics of and correlations between 
the variables are reported in Table 1. SNMP showed 
a stronger relation with arithmetic fluency (r = .52) 
than with CBM (r = .30), whereas counting skills had 
a moderate relation with both (r = .55 and r = .49, 
respectively). The associations between domain-
general skills and arithmetic fluency were weak 
with correlations ranging from r = .23 to r = .43, 
rapid automatized naming showing the strongest 
relation, and vocabulary the weakest. Regarding the 
relations with CBM, the strongest association was 
with nonverbal reasoning, r = . 43, and weakest with 
rapid automatized naming, r = .21. Multicollinearity 
was unlikely as all correlations between the predictors 
were moderate at best.

Means and standard deviations on arithmetic fluency 
and CBM by each status group are reported in Table 2. 
As to RQ1, the chi-square test of the crosstabulation of 
MLD25 and TYP based on arithmetic fluency and CBM 
was significant, χ2 (1) = 59.40, p <.001. Sixty-five percent 
of children were observed as MLD25 in both arithmetic 
fluency and CBM, while 88% of children as TYP. Similarly, 
the crosstabulation of three groups, MLD10, LOW, and 
TYP, based on arithmetic fluency and CBM turned out 
to be significant, χ2 (4) = 104.01, p < .001. Sixty-seven 
percent of the children were observed as MLD10 in 
both arithmetic fluency and CBM, whereas only 39% 
of LOW, and 88% of TYP. These results confirmed that 
a series of separate logistic regression analyses for 
arithmetic fluency and CBM would be justified.

Predictors of MLD25 Status

Arithmetic fluency (RQ2.1)

A binary logistic regression analysis was performed 
to ascertain the effects of domain-specific skills 
(i.e., SNMP and counting skills) and domain-general 
skills (i.e., nonverbal reasoning, working memory, 
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rapid automatized naming, and vocabulary) on the 
likelihood that participants have MLD25 status. The 
logistic regression model was statistically significant, χ2 
(6) = 61.69, p < .001, and explained 42.0% (Nagelkerke 
R2) of the variance in MLD status (Table 3). The model 
correctly classified 83.0% of cases. With a cutoff set 
at 0.5, the prediction for children with TYP status was 
more accurate (94.9%) than those with MLD25 (50.0%). 
Two domain-specific and one domain-general skill 

predicted the MLD25 status: SNMP (B = -.18, p = .005, 
odds ratio = .83), counting skills (B = -.14, p = .001, odds 
ratio = .87), and rapid automatized naming (B = -.22, 
p = .035, odds ratio = .80). Decreasing performance 
in these three skills was associated with increasing 
likelihood of MLD25 status. These are illustrated in 
Figure 1.

Table 1
Descriptive Statistics of and Correlations between the Variables 

1. 2. 3. 4. 5. 6. 7. 8.

1. SNMP t1 —

2. Counting t1 0.46*** —

3. Nonverbal reasoning t1 0.25*** 0.28*** —

4. Working memory t1 0.25*** 0.41*** 0.31*** —

5. Rapid naming t1 0.42*** 0.29*** 0.23** 0.33*** —

6. Vocabulary t1 0.13 0.28*** 0.21** 0.21** 0.13 —

7. Arithmetic fluency t2 0.52*** 0.55*** 0.28*** 0.39*** 0.43*** 0.23*** —

8. CBM t2 0.30*** 0.49*** 0.43*** 0.34*** 0.33*** 0.21** 0.61*** —

M 17.39 20.22 24.18 6.26 10.00 13.45 36.58 34.76

SD 4.13 5.80 5.16 1.74 2.47 3.23 16.90 9.22

Min-Max 7–29 0–29 8–34 0–11 2.09–18.95 2–24 2–89 5–48

Skewness 0.06 -0.89 -0.32 -0.03 0.08 -0.02 0.52 -1.05

Kurtosis –0.06 0.51 -0.39 0.53 1.32 1.09 0.33 0.89

Cronbach’s α .887 .914 .934 .692 .983 .747 .971 .918

Note. ** p < .01, *** p < .001. t1 = time point 1 (grade 1), t2 = time point 2 (grade 3), SNMP = Symbolic numerical magnitude 
processing, CBM = Curriculum-based mathematics

Table 2
Means and Standard Deviations for Arithmetic Fluency and Curriculum-Based Mathematics (CBM) by Each 
Status Group

  TYP MLD25 LOW MLD10

M 

(SD)

n

M 

(SD)

n

M 

(SD)

n

M 

(SD)

n

Arithmetic fluency t2 a

(max. 90 p.)

43.29 

(13.78)

154

16.69

(6.28)

52

21.16

(2.05)

31

10.10

(4.21)

21

CBM t2 b

(max. 49 p.)

39.14

(4.68)

154

21.81

(6.85)

52

26.60

(1.65)

30

15.27

(5.72)

22

Note. TYP = typically performing (performance >25th percentile), MLD25 = mathematical learning difficulties (performance ≤ 
25th percentile), LOW = low-performing (performance between 11–25th percentile), MLD10 = mathematical learning disorder 
(performance ≤ 10th percentile). a The participants in each group are based on their performance on Arithmetic fluency. b The 
participants in each group are based on their performance on CBM. The LOW and MLD10 include the same participants as 

the MLD25.
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Curriculum-based mathematics (RQ2.2)

A similar binary logistic regression analysis was 
conducted for CBM as for arithmetic fluency. The 
logistic regression model showed to be statistically 
significant, χ2 (6) = 34.89, p < .001, and explained 26.0% 
of the variance in MLD25 status (Table 4). The model 
correctly classified 79.0% of cases. With a cutoff set 
at 0.5, the prediction for children with TYP status was 
more accurate (94.2%) than those with MLD25 (34.8%). 
One domain-specific and one domain-general skill 
predicted the MLD25 status: counting skills (B = -.09, p 
= .026, odds ratio = .92) and nonverbal reasoning (B = 
-.12, p = .003, odds ratio = .89). Decreasing performance 
in these two skills was associated with a higher 
probability of MLD25 status, as illustrated in Figure 2.

Predictors of MLD10 and LOW Status

Arithmetic fluency (RQ3.1) 

A multinomial logistic regression analysis was run 
with a dependent variable of status consisting of 
three status groups (TYP, LOW, MLD10). The model 
was statistically significant, χ2 (12) = 65.01, p < .001, and 
explained 28.0% of the variance in status (Table 5). 
When MLD10 was compared to TYP, the results were 
similar to the MLD25 status; SNMP, counting skills, and 
rapid automatized naming, predicted MLD10 status 
(SNMP: B = -.22, p = .019, odds ratio = .81; counting skills: B 
= -.16, p = .008, odds ratio = .85; and rapid automatized 
naming: B = -.28, p = .038, odds ratio = .75). When LOW 
was compared to TYP, only domain-specific skills, 
SNMP (B = -.17, p = .021, odds ratio = .85) and counting 

Table 3
Logistic Regression Analysis for MLD25 Status on Arithmetic Fluency

95% CI for OR

Predictor B SE Z p OR Lower Upper

Intercept 6.69 1.64 4.07 < .001 NA NA NA

SNMP t1 -0.18 0.06 -2.84 0.005 0.83 0.73 0.94

Counting t1 -0.14 0.04 -3.20 0.001 0.87 0.80 0.95

Nonverbal reasoning t1 0.02 0.04 0.46 0.643 1.02 0.94 1.11

Working memory t1 -0.11 0.13 -0.83 0.408 0.90 0.69 1.16

Rapid naming t1 -0.22 0.10 -2.11 0.035 0.80 0.66 0.98

Vocabulary t1 0.02 0.07 0.30 0.767 1.02 0.89 1.17

Model fit measures Deviance AIC R2N χ2 df p

149.54 163.54 0.42 61.68 6 < .001

Note. Estimates represent the log odds of MLD25 vs. TYP (reference group). MLD25 = mathematical learning difficulties 
(performance ≤ 25th percentile), TYP = typically performing (performance >25th percentile). SNMP = symbolic numerical 
magnitude processing, OR = odds ratio, CI = confidence interval, AIC = Akaike information criterion, R2N = Nagelkerke’s R2.

Figure 1
Predicted Probability with 95% Confidence Interval for a Status of MLD25 in Arithmetic Fluency versus a) Sym-
bolic Numerical Magnitude Processing (SNMP), b) Verbal Counting, and c) Rapid Automatized Naming
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skills (B = -.13, p = .009, odds ratio = .88) were significant 
predictors for LOW status. None of the predictors were 
significant when comparing MLD10 with LOW. Figure 
3 illustrates how decreasing performance in SNMP 
and counting skills are associated with an increased 
likelihood of MLD10 and LOW status, and similarly for 
rapid automatized naming for MLD10 status.

Curriculum-based mathematics (RQ3.2)

A similar multinomial logistic regression analysis was 
done for CBM. The model was statistically significant, 
χ2 (12) = 47.12, p < .001, and explained 21% of the variance 
in status (Table 6). When MLD10 was compared to 
TYP, the same two factors that had predicted MLD25 
predicted also MLD10 status: counting skills (B = -.15, 
p = .006, odds ratio = .86) and nonverbal reasoning 

(B = -.11, p = .046, odds ratio = .89). In addition, rapid 
automatized naming (B = -.28, p = .033, odds ratio = .76) 
predicted MLD10 status. When LOW was compared to 
TYP, again, nonverbal reasoning predicted the status 
(B = -.13, p = .009, odds ratio = .88), but counting skills 
was no longer a significant predictor. Instead, working 
memory predicted LOW status (B = -.33, p = .035, odds 
ratio = .72). These differences were also visible when 
comparing MLD10 versus LOW. Decreasing working 
memory skills was associated with a higher probability 
of LOW status than MLD10, and vice versa for rapid 
automatized naming. Figure 4 illustrates the predicted 
probabilities for the status of TYP, LOW, and MLD10 
versus counting skills, nonverbal reasoning, working 
memory and rapid automatized naming.

Figure 2
Predicted Probability with 95% Confidence Interval for a Status of MLD25 in Curriculum-Based Mathematics 
versus a) Verbal Counting and b) Nonverbal Reasoning

Table 4
Logistic Regression Analysis for MLD25 Status on Curriculum-Based Mathematics

95% CI for OR

Predictor B SE Z p OR Lower Upper

Intercept 4.67 1.31 3.57 < .001 NA NA NA

SNMP t1 0.02 0.06 0.36 0.715 1.02 0.91 1.14

Counting t1 -0.09 0.04 -2.23 0.026 0.92 0.85 0.99

Nonverbal reasoning t1 -0.12 0.04 -2.94 0.003 0.89 0.82 0.96

Working memory t1 -0.13 0.12 -1.06 0.287 0.88 0.69 1.12

Rapid naming t1 -0.11 0.09 -1.21 0.225 0.89 0.75 1.07

Vocabulary t1 0.02 0.06 0.27 0.788 1.02 0.90 1.15

Model fit measures Deviance AIC R2N χ2 df p

172.05 186.05 0.26 34.89 6 < .001

Note. Estimates represent the log odds of MLD25 vs. TYP (reference group). MLD25 = mathematical learning difficulties 
(performance ≤ 25th percentile), TYP = typically performing (performance > 25th percentile). SNMP = symbolic numerical 
magnitude processing, OR = odds ratio, CI = confidence interval, AIC = Akaike information criterion, R2N = Nagelkerke’s R2. 
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Table 5 
Multinomial Logistic Regression Analysis for MLD10 and LOW Status on Arithmetic Fluency

95% CI for OR

Predictor B SE Z p OR Lower Upper

MLD10–TYP

Intercept 7.30 2.12 3.44 < .001 NA NA NA

SNMP t1 -0.22 0.09 -2.35 0.019 0.81 0.67 0.96

Counting t1 -0.16 0.06 -2.65 0.008 0.85 0.76 0.96

Nonverbal reasoning t1 -0.01 0.06 -0.16 0.876 0.99 0.88 1.11

Working memory t1 -0.09 0.19 -0.49 0.622 0.91 0.63 1.32

Rapid naming t1 -0.28 0.14 -2.07 0.038 0.75 0.58 0.98

Vocabulary t1 0.05 0.10 0.49 0.625 1.05 0.86 1.28

LOW–TYP

Intercept 5.34 1.78 2.99 0.003 NA NA NA

SNMP t1 -0.17 0.07 -2.31 0.021 0.85 0.74 0.98

Counting t1 -0.13 0.05 -2.63 0.009 0.88 0.80 0.97

Nonverbal reasoning t1 0.03 0.05 0.72 0.471 1.04 0.94 1.14

Working memory t1 -0.12 0.15 -0.80 0.421 0.89 0.66 1.19

Rapid naming t1 -0.18 0.11 -1.62 0.105 0.83 0.66 1.04

Vocabulary t1 0.01 0.08 0.10 0.923 1.01 0.86 1.18

MLD10–LOW

Intercept 1.97 1.98 0.99 0.320 NA NA NA

SNMP t1 -0.05 0.10 -0.52 0.604 0.95 0.79 1.15

Counting t1 -0.03 0.06 -0.52 0.602 0.97 0.86 1.09

Nonverbal reasoning t1 -0.04 0.07 -0.67 0.501 0.96 0.84 1.09

Working memory t1 0.03 0.20 0.12 0.901 1.03 0.69 1.53

Rapid naming t1 -0.10 0.13 -0.73 0.468 0.91 0.70 1.18

Vocabulary t1 0.04 0.10 0.40 0.689 1.04 0.85 1.27

Model fit measures Deviance AIC R2N χ2 df p

210.64 238.65 0.28 65.01 12 < .001

Note. Estimates represent the log odds of MLD10 vs. TYP (reference group), LOW vs. TYP (reference group), and MLD10 vs. 
LOW (reference group). MLD10 = mathematical learning disorder (performance ≤ 10th percentile), TYP = typically performing 
(performance >25th percentile), LOW = low-performing (performance between 11–25th percentile). SNMP = symbolic numerical 
magnitude processing, OR = odds ratio, CI = confidence interval, AIC = Akaike information criterion, R2N = Nagelkerke’s R2. 

Figure 3
Predicted Probability for a Status of MLD10, LOW and TYP in Arithmetic Fluency versus a) Symbolic Numerical 
Magnitude Processing (SNMP), b) Verbal Counting, and c) Rapid Automatized Naming
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Figure 4 
Predicted Probability for a Status of MLD10, LOW and TYP in Curriculum-Based Mathematics versus a) Verbal 
Counting b) Nonverbal Reasoning, c) Working Memory, and d) Rapid Automatized Naming

Table 6
Multinomial Logistic Regression Analysis for MLD10 and LOW Status on Curriculum-Based Mathematics

95% CI for OR

Predictor B SE Z p OR Lower Upper

MLD10–TYP

Intercept 4.28 1.72 2.49 0.013 NA NA NA

SNMP t1 0.02 0.08 0.20 0.840 1.02 0.87 1.19

Counting t1 -0.15 0.06 -2.77 0.006 0.86 0.77 0.96

Nonverbal reasoning t1 -0.11 0.06 -2.00 0.046 0.89 0.80 1.00

Working memory t1 0.15 0.19 0.79 0.431 1.16 0.80 1.69

Rapid naming t1 -0.28 0.13 -2.13 0.033 0.76 0.59 0.98

Vocabulary t1 0.05 0.09 0.60 0.551 1.06 0.88 1.26

LOW–TYP

Intercept 3.49 1.58 2.20 0.028 NA NA NA

SNMP t1 0.02 0.07 0.36 0.719 1.03 0.90 1.17

Counting t1 -0.04 0.05 -0.78 0.435 0.96 0.88 1.06

Nonverbal reasoning t1 -0.13 0.05 -2.60 0.009 0.88 0.80 0.97

Working memory t1 -0.33 0.15 -2.11 0.035 0.72 0.53 0.98

Rapid naming t1 0.03 0.12 0.25 0.806 1.03 0.82 1.29

Vocabulary t1 -0.02 0.08 -0.23 0.818 0.98 0.85 1.14

MLD10–LOW

Intercept 0.79 1.99 0.40 0.690 NA NA NA

SNMP t1 -0.01 0.09 -0.09 0.927 0.99 0.82 1.19

Counting t1 -0.12 0.06 -1.82 0.069 0.89 0.79 1.01

Nonverbal reasoning t1 0.01 0.07 0.19 0.849 1.01 0.89 1.16

Working memory t1 0.48 0.23 2.09 0.036 1.61 1.03 2.52

Rapid naming t1 -0.31 0.16 -1.98 0.048 0.74 0.54 1.00

Vocabulary t1 0.07 0.10 0.69 0.490 1.07 0.88 1.32

Model fit measures Deviance AIC R2N χ2 df p

222.80 250.80 0.21 47.12 12 < .001

Note. Estimates represent the log odds of MLD10 vs. TYP (reference group), LOW vs. TYP (reference group), and MLD10 vs. 
LOW (reference group). MLD10 = mathematical learning disorder (performance ≤ 10th percentile), TYP = typically performing 
(performance >25th percentile), LOW = low-performing (performance between 11–25th percentile). SNMP = symbolic numerical 
magnitude processing, OR = odds ratio, CI = confidence interval, AIC = Akaike information criterion, R2N = Nagelkerke’s R2.
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Discussion 

This study investigated how domain-specific (i.e., 
SNMP and counting skills) and domain-general skills 
(i.e., nonverbal reasoning, working memory, rapid 
automatized naming, and vocabulary) measured in 
the first grade predict MLD status among third graders. 
Several studies have found both domain-specific (e.g., 
Cañizares et al., 2012; Desoete et al., 2012; Hassinger-
Das et al., 2014; Landerl et al., 2004) and domain-
general skills (e.g., David, 2012; Huijsmans et al., 2022; 
Mazzocco & Grimm, 2013) to be negatively associated 
with MLD. However, relatively few studies have 
considered whether these relations are dependent 
on how MLD has been defined and operationalised 
in terms of the severity of MLD and measures of 
mathematics performance. The novelty of this study 
is that it took into consideration both the different 
cut-off criteria and the measures of mathematics 
performance (i.e., arithmetic fluency and curriculum-
based mathematics) in defining the MLD status, and 
included several early domain-specific and domain-
general skills as predictors of MLD. Our findings suggest 
that both different cut-off criteria and mathematics 
measures used for the definition of the MLD status are 
important to acknowledge, as these led to relatively 
significant variation in which students were identified 
as having MLD and which domain-specific and 
domain-general factors contributed to the MLD status.

Prior research has used various different mathematics 
measures for the identification of students with 
MLD. Typically, arithmetic fluency (Chow et al., 2021; 
Koponen, Aro, et al., 2018) and broader mathematics 
performance tests (Jordan et al., 2002) have been 
applied. Little is known whether these different 
measures identify the same participants under the 
same MLD status. Therefore, in our study, we first 
examined the overlap of MLD statuses (MLD25, MLD10 
and LOW) based on arithmetic fluency and CBM (RQ1). 
For the MLD25 status, the overlap was 65 %, while for 
the MLD10 status, the share was 67 %, and for LOW, 
only 39 %. These results show that the use of only one 
type of the mathematics measure would have missed 
a number of children struggling with either arithmetic 
fluency or CBM. Consequently, using a measure 
reflecting one area of mathematics to define MLD 
may lead to an exclusion of students with difficulties in 
another equally relevant area of mathematics. It is thus 
important to consider which mathematics measures 
to use for the identification of MLD, and whether to 
rely on one or multiple measures. As we are still lacking 
a globally applicable diagnostic measure of MLD, we 
would encourage researchers to carefully report both 
the cut-off criteria and mathematics measures used 
for the identification of MLD and MLD status (e.g., LOW, 
MLD10) for better comparability of research findings. 

Confirming that both arithmetic fluency and CBM 
measures are important to consider, we focused 
next on how domain-specific and domain-general 
skills predict different MLD status based on arithmetic 
fluency or curriculum-based mathematics.

Predictors of MLD based on Arithmetic Fluency 

As hypothesized (H2.1), MLD25 status based on 
arithmetic fluency was predicted by SNMP, verbal 
counting skills and rapid automatized naming. The 
lower was the first-grade performance in these skills, 
the higher was the probability of showing weak 
arithmetic fluency (MLD25) in the third grade. A similar 
pattern of predictions was found when the MLD25 
group was divided into MLD10 and LOW. As expected 
(H3.1), SNMP and counting skills predicted both statuses, 
but rapid automatized naming predicted only MLD10. 
That is, SNMP and counting skills predicted the status 
of MLD based on arithmetic fluency independent 
of the severity level of MLD. Weakness in early rapid 
automatized naming, instead, seemed to be more 
strongly associated with MLD10. 

Prior research has shown the importance of 
early mathematical skills for later arithmetic and 
mathematics performance (Aunio & Niemivirta, 2010; 
ten Braak et al., 2022), which our findings support. The 
role of (S)NMP in mathematics learning and      MLD has 
been under debate due to mixed findings (Cañizares 
et al., 2012; De Smedt et al., 2013; De Smedt & Gilmore, 
2011; Desoete et al., 2012; Mammarella et al., 2021). 
Our findings give further support to SNMP being an 
important factor for later mathematics performance, 
as we found that SNMP measured at grade 1 was a 
significant predictor of MLD status based on arithmetic 
fluency at grade 3. The task measuring SNMP involves 
recognition of number symbols (1-digit numbers) and 
understanding their related magnitude (Brankaer et 
al., 2017). It could be that this type of basic symbolic 
magnitude processing in the beginning school is 
relevant especially for arithmetic learning at school 
(De Smedt et al., 2013; Nosworthy et al., 2013), and thus 
a good predictor of MLD based on arithmetic fluency. 
Also, verbal counting skills (i.e., knowledge of number 
sequences) was found to predict MLD status based 
on arithmetic fluency. Prior research has shown that 
verbal counting skills are important for learning basic 
addition and subtraction skills, and used also as a 
strategy for solving unknown addition and subtraction 
facts (Koponen et al., 2019; Ostad, 1998). Therefore, 
difficulties in early verbal counting skills may slow 
down the learning of arithmetic facts. For these 
children, solving addition and subtraction facts may 
become more error-prone due to making mistakes 
in number sequences, and continuously getting 
incorrect answers between the fact and the answer 
may thus interrupt memorizing the facts fluently. 
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Rapid automatized naming was found to be the only 
domain-general predictor of MLD status based on 
arithmetic fluency, which is in line with prior research 
(Donker et al., 2016; Mazzocco & Grimm, 2013). While 
we found non-alphanumeric rapid automatized 
naming to predict MLD25 and MLD10 status, Donker 
et al. (2016) similarly reported students with MLD25 to 
have weaker non-alphanumeric rapid automatized 
naming skills. Further, Mazzocco and Grimm (2013) 
found students with MLD10 to have persistent 
weakness in rapid automatized naming of colors 
compared to their peers, and also students with LOW 
status to show slight delay in their development of 
rapid naming of colors. As to why rapid automatized 
naming and arithmetic fact retrieval are related, 
in both tasks children need to access quickly and 
retrieve phonological representations from long-term 
memory (e.g., “blue” and “seven”). The role of early 
non-alphanumeric rapid automatized naming skills 
in later MLD based on arithmetic fluency seems to be 
important to acknowledge.

Based on our findings, both weak SNMP and counting 
skills could be considered as risk factors for later 
difficulties in arithmetic fluency, independent of the 
level of severity, while rapid automatized naming 
seems to be specifically associated with MLD10 
students’ arithmetic fluency. As a practical implication 
for early schooling, SNMP and verbal counting skills 
should be regularly screened in classrooms (see e.g., 
Brankaer et al., 2017; Nosworthy et al., 2013; Salminen 
& Koponen, 2011). Those who struggle in comparing 
1-digit numbers or in reciting number sequences 
forwards and backwards, should be provided 
with relevant intensified pedagogical support (i.e., 
intervention) as early as possible (see e.g., Ramani et 
al., 2017). Even if the role of early rapid automatized 
naming skills in MLD is important to acknowledge, 
training of domain-general skills, with many examples 
from working memory training research, has shown 
rather weak far transfer effects on mathematics 
performance (Melby-Lervåg & Hulme, 2013). However, 
recently Pecini et al. (2019) showed the training of rapid 
automatized naming using specific software to be 
effective in ameliorating reading accuracy and speed. 
Until we have solid evidence of the effectiveness of 
training rapid automatized naming and its transfer on 
improved mathematical skills, it might be more useful 
to focus on training mathematical skills as a preventive 
step with children      identified with weakness in early 
rapid automatized naming skills.

Predictors of MLD based on Curriculum-Based 
Mathematics

Our findings on the predictions of MLD based on CBM 
differed from those of      MLD based on arithmetic 
fluency. Here, the domain-general skills seemed to be 
better predictors than domain-specific skills, especially 

in relation to MLD10 and LOW status. Because the 
tasks in CBM had more variety and complexity in their 
mathematics content and procedures, we expected 
counting skills (Hassinger-Das et al., 2014), nonverbal 
reasoning (Engle, 2018; Huijsmans et al., 2022), working 
memory (David, 2012), and vocabulary (Chow et al., 
2021) to predict MLD25 status. In accordance with 
our hypothesis (H2.2), counting skills and nonverbal 
reasoning, but not working memory, were found to 
predict MLD25 status based on CBM. When MLD25 
was divided into two, counting skills only predicted 
the MLD10 status, but not LOW, as we would have 
expected (H2.3). In fact, no domain-specific skills 
predicted LOW status based on CBM. Regarding 
domain-general skills, in contrast to our hypothesis, 
nonverbal reasoning and rapid automatized naming, 
but not working memory, predicted MLD10 status 
based on CBM. Instead, working memory together 
with nonverbal reasoning predicted LOW status.

As elaborated above, early counting skills have shown 
to be associated with later mathematics performance 
(ten Braak et al., 2022). Concerning MLD status, our 
results revealed that verbal counting skills predicted 
especially MLD10 status based on CBM. Taken 
together, these findings imply that verbal counting 
skills are good at predicting MLD10 status independent 
of the mathematics measure used for identification. 
This further puts emphasis on supporting children’s 
early counting skills in early schooling as a preventive 
step for later severe MLD.

Nonverbal reasoning was found to predict MLD status 
based on CBM, independent of the severity level. CBM 
test measured a broad range of mathematical subskills 
with different types of tasks (e.g., “Lisa’s little finger is 4 
g/kg/cm/m long”; “One apple costs 3 krones, 4 apples 
cost __ krones.”, simple word problems for fractions, 
and addition and subtraction algorithms). Solving 
these tasks thus required making logical decisions and 
proceeding systematically in the task (i.e., nonverbal 
reasoning) (Engle, 2018), which differs from solving 
simple arithmetic facts. This result also resonates well 
with Hujsmans’ et al. (2022) findings showing students 
with MLD to perform weaker in nonverbal reasoning 
compared to their peers without MLD. 

MLD10 and LOW based on CBM were separated by 
the domain-general predictors of rapid automatized 
naming and working memory (i.e., central executive 
functioning). Overall, rapid automatized naming 
turned out to be an important predictor of MLD10 status, 
as it predicted the status based on both arithmetic 
fluency and CBM. Previously, rapid automatized 
naming has been found to be related to broader 
mathematics performance as well, although not as 
strongly as to arithmetic fluency (Koponen et al., 2017). 
Because the tasks in mathematics performance tests 
typically involve more processes than quick retrieval 



January 2022, Volume 14, Issue 3, 335-352

348

only, the relationship of rapid automatized naming 
with broader mathematics performance are weaker 
than with arithmetic fluency. This was also evident in 
our study (r = .43 with arithmetic fluency, and r = .33 
with CBM).

Interestingly, working memory, and more specifically, 
central executive, predicted only LOW status based 
on CBM, although prior research has found its role to 
be significant in mathematics learning (Friso-van den 
Bos et al., 2013) and MLD. Students with MLD often 
have a working memory deficit (Andersson & Lyxell, 
2007; David, 2012; Passolunghi & Mammarella, 2010). 
Concerning the MLD status here, our results partly 
reflect the findings by Huijsman et al. (2022), who 
found students identified as LOW to be weaker than 
MLD10 in the visual component of working memory. 
Even if we used a generally recognized backwards 
digit span as a measure of central executive in our 
study, it might be that the central executive measured 
this way captured only part of the construct, and a 
broader measure would have been needed to retain 
its predictive power and thus obtain a similar effect on 
MLD as in previous studies.

Limitations and Future Directions

The current study has some limitations that need 
to be noted. First, although we included many 
domain-specific and domain-general skills based 
on prior research, we may have missed some other 
important factors as predictors, such as non-symbolic 
numerical magnitude processing, subitizing, or object 
counting as domain-specific skills, or inclusion of other 
components of working memory (i.e., phonological 
loop and visuo-spatial working memory) and 
language (e.g., receptive vocabulary or syntax). Their 
role as a predictor of MLD would be of future interest 
to explore. 

Concerning the severity criteria for the MLD status, 
we based our grouping of children on sample-based 
percentiles both in arithmetic fluency and CBM. It 
might be argued that it would have been better to 
use mathematics tests with norms for identifying 
students with MLD. At the time of the study, neither 
standardized broad mathematics performance tests 
nor combined tests of addition and subtraction facts 
were available for this age group in Norway. Therefore, 
we developed a new CBM test, and applied sample-
based percentiles in both CBM and arithmetic fluency 
(i.e., a combination of addition and subtraction 
fluency subtests) for the identification of MLD. The lack 
of global standardized mathematics measures to be 
used in MLD studies is      problematic in terms of the 
comparability of results, and should be addressed in 
future research on MLD.

Note, that because of practical reasons, our sample 
was restricted to only include children from the Oslo 
region in Norway, due to which caution should be 
exercised in generalizing the findings to other contexts. 
Also, the Covid-19 pandemic complicated the final 
stages of the data collection due to which one school 
withdrew from the study and the data collection in 
spring 2021 needed to be organized online. However, 
there are no indications of this causing any bias in our 
data.

Conclusions

Our findings suggest that both the different cut-off 
criteria and mathematics measures used for defining 
and operationalizing the MLD status are important to 
acknowledge in studies, as these may lead to relatively 
significant variation in which students are identified 
as having MLD and which factors contribute to the 
MLD status. In relative terms, domain-specific skills 
appear to be more predictive when the MLD status 
is based on arithmetic fluency, while domain-general 
skills seem more influential when the MLD status is 
based on CBM. Counting skills and rapid automatized 
naming, instead, appear to be robust predictors of 
MLD status regardless of the mathematics measure 
used. As a practical implication for the prevention of 
MLD, we advocate focusing on screening children’s 
SNMP and verbal counting skills in early grades, and 
providing appropriate intervention in these for those 
in need of educational support. 
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