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Abstract

Introduction

Advanced Item Response Theory (IRT) practices serve 
well in understanding the nature of latent variables which 
have been subject to research in various disciplines. In the 
current study, 7-12 aged 2536 children’s responses to 20-
item Visual Sequential Processing Memory (VSPM) sub-test 
of Anadolu-Sak Intelligence Scale (ASIS) were analyzed 
with Mixture Rasch Model (MRM). In the first phase of the 
study, concomitant (covariate) variables were not used. 
In the second phase, age and gender were added to 
the model, and then the two models were compared in 
terms of fit indices, the number of latent classes and the 
distribution of item difficulties in the latent classes. The 
results of the study suggested that there were three latent 
classes in both models; however, the latter model had a 
better fit compared to the former model. In addition, the 
latent classes in both models had similar characteristics, 
and the distributions of item difficulties in the latent classes 
were also quite similar in both models while they had some 
differences in some aspects. The sizes of identical latent 
classes in both models varied between 15% and 30%.  The 
results of the current study are expected to provide a deeper 
insight to researchers studying measurement theory and/or 
intelligence measurement. 

New methods in measurement theory have a pivotal role 
in understanding the nature of latent variables which 

have been subject to research in various disciplines. In 
parallel with this view, new methods in measurement theory 
have been used in the measurement of intelligence which 
has a background of more than a century. Particularly 
advances related to Item Response Theory (IRT) continuously 
have offered critical advantages both theoretically and 
practically. 

The sharpest advantage of IRT, when compared to Classical 
Test Theory (CTT), is the principle of parameter invariance. 
With IRT, ability prediction independent of items and item 
parameter prediction independent of groups are ensured 
(Embretson & Reise, 2000; Hambleton & Swaminathan, 1985). 

Keywords: 
Mixture Rasch Model, Concomitant/Covariate Variable, 
Latent Class, Visual Processing Memory

*Correspondance Details: Murat Doğan Şahin.
Anadolu University, Faculty of Education, 
Department of Educational Sciences, Eskisehir, Turkey.
E-mail: mdsahin@anadolu.edu.tr
ORCID: http://orcid.org/0000-0002-2174-8443



December 2020, Volume 13, Issue 2, 277-285

278

On the other hand, assuming the population from 
which item and ability parameters are predicted as a 
single homogenous population is a notable limitation 
for prediction through IRT. In fact, that a population 
consists of homogenous unknown sub-groups is a 
manifestation of this limitation (von Davier & Rost, 
2017). This paves the way for new practices in IRT.

Another limitation for conventional IRT practices 
surfaces in bias  studies (such as Differential Item 
Functioning-DIF). Although items providing advantage 
systematically to one of the groups of same ability 
level, or biased items in other words, can be identified 
with DIF studies, this practice is based on the 
assumption that the related groups are homogenous 
within themselves in terms of variables subject to 
measurement. Yet, it is known that individuals under the 
same manifest variable may consist of heterogeneous 
sub-groups (Samuelsen, 2005). Therefore, for whom 
items are biased cannot be identified and it cannot 
be understood for which reasons individuals respond 
differentially to items (Cohen & Bolt, 2005). This state 
comes along as another notable limitation for DIF 
practices based on manifest variables. 

It can be argued that Mixture Rasch Model (Rost, 
1990), which emerged through combining Rasch 
Model and latent class approach, offers a solution 
to these aforementioned limitations. Mixture Rasch 
Model (MRM) can be considered as a combination 
of latent class approach and IRT models (Frick et al., 
2015). Accordingly, a continuous latent trait and latent 
class membership are predicted synchronously (Jiao 
et al., 2011). To put it another way, latent classes that 
are homogenous in itself but differ from other classes 
are identified, and group specific items and ability 
parameters are predicted in conjunction for these 
latent classes.  Thus, it is postulated that invariance 
assumption is ensured for each latent class (Şen & 
Cohen, 2019). Compendiously, MRM combines classic 
Rasch models and latent class analysis and thereby it 
can exert item and ability parameters prediction for 
homogeneous sub-groups. This treatment provides 
identification of items showing DIF based on these 
latent classes, as well.   

Another advantage of MRM is the use of concomitant 
variables. In the identification of latent classes, the 
effect of manifest covariate variables, also referred to 
as concomitant variables, on the formation of models 
can be tested, and which of these manifest variables 
have a notable contribution to the model can be 
revealed.

Within the scope of the current study, 20-item Visual 
Sequential Processing Memory (VSPM) sub-test of 
Anadolu-Sak Intelligence Scale (ASIS) was analyzed 

with MRM and how the item parameters in the latent 
classes differ was examined. In the second phase of 
the study, the participants’ genders and ages were 
added to the model as covariates and the contribution 
of these manifest variables to the model was tested.
 
Visual Sequential Processing Memory 

VSPM is one of the three sub-tests measuring memory 
capacity in ASIS. These tests focus on processing 
memory and short-term memory. The theoretical 
framework of processing memory model in ASIS is based 
on Baddeley (2012) aiming to measure visual memory 
bandwidth. It is known that processing memory 
correlates at a high level with learning and academic 
achievement. A number of performances including 
basic reading, comprehension, mathematical 
calculation and reasoning are dependent upon 
processing memory capacity (Alloway, 2009; Dehn, 
2014).  Visual processing memory has an active role in 
the development of particularly basic mathematical 
abilities in early ages (Geary, 2011). Therefore, it can 
be asserted that studies on processing memory can 
provide significant implications regarding academic 
abilities of individuals in age groups for which the 
measurement is performed. 

The items in the sub-test are mostly geometric and 
focus on sequencing of different shapes. Participants 
are provided with a sequence of shapes for a few 
seconds and then they are expected to pick it out 
among other sequences. There are fewer shapes in 
the beginning of the test; however, the number of 
shapes increases through the end. Using some shapes 
for more than once, various shape patterns are formed 
in some sequences (ASIS Manual, 2016). 

Rasch & Mixture Rasch

Rasch Model (Rasch, 1960), a member of IRT family, 
makes use of only difficulty parameter while defining a 
relationship between individuals’ ability levels and their 
likelihood of responding to a binary item. Accordingly, 
the logit of the difference between a person’s ability 
and item difficulty provides responding likelihood of 
the item. These parameters are in interval scale. To 
determine the starting point in this scale, a constant 
reference point is identified in a way that difficulty of 
an item or total difficulty of all items is zero (Fischer, 
1995). Given a person’s ability subject to measurement 
is θi and item difficulty is βj, response yij given by person 
i for item j is modeled as following (Rasch, 1960):



Fitting a Mixture Rasch Model to Visual Sequential Processing Memory Sub-dimension of ASIS / Şahin

279

Mixture model is a general approach used in order 
to model data which are thought to originate from 
different groups yet when membership to the group is 
not known. This modeling is as follows:

fk(.) components in the formula may be densities or 
regression models. Mixture Rasch emerges with the 
combination of Formula 1 and Formula 2.

In this model, also known as saturated model, a 
number of parameters that are not of concern in 
reality need to be predicted. Therefore, Rost and von 
Davier (1995) suggested a more parsimonious model 
based on only mean and variance when the number 
of items is more than four. In line with this, General 
Rasch Mixture Model turns out as:

The components in the formula are as follows:  
π(k I xi ,α): Concomitant model for class membership,
h(yi I ri,βk): Class-specific likelihood of item difficulties,
g(ri I ɣi ): Class-specific score distribution. 

Use of concomitant variables affecting prior class 
membership is also possible in MRM, and whether 
adding these variables provides a notable fit in the 
model or not can be tested. Concomitant variables 
model predicts the mixture and the influence of 
covariates simultaneously, which stands out as a 
notable advantage in contrast to other approaches 
to reveal the relationship between class membership 
and covariates ex post (Frick et al., 2012).

Research Purpose and Significance

In the first phase of the present research study, 
the distributions of item difficulties were examined 
according to latent classes that were formed with 
respect to VSPM levels of 7-12 aged individuals. It was 
also attempted to reveal the nature of latent classes 
based on the difference in this distribution. In the 
second phase, the effect of adding covariates on 
model fit and the distribution of the item difficulties in 
the latent classes in this second model (concomitant 
model) were examined, and this distribution was 
compared with the distribution of difficulties in the first 
model. Accordingly, MRM analysis, which bears the 
same purpose with latent class analyses yet, which is 
a much more robust and relatively new method, was 
performed in the study. 

A number of studies are extant in the literature aiming 
to predict ability and item parameters within the 
scope of IRT models in different aspects of intelligence 

tests (e.g., Beaujean & Osterlin, 2008; Ferreira et al., 2012; 
Schleicher-Dilks, 2015) or revealing bias through DIF 
practices (e.g., Abad et al., 2004; Colom et al., 2004; van 
der Sluis et al., 2008). On the other hand, it is also overt 
that Mixture IRT models are a better fit as opposed to 
conventional IRT models in cases when populations 
are not homogeneous (Muthén & Asparouhov, 2006). 
In this context, considering that a significant purpose 
of intelligence tests is to identify gifted individuals and 
categorize individuals in terms of related dimensions 
of intelligence test battery, it can be argued that the 
results to be obtained in the current study through 
MRM analysis would prove significant for the literature 
on measurement of intelligence. 

VSPM is closely related to basic mathematics and 
language abilities of individuals in the 7-12 age groups. 
Herewith, the results of the study would also provide 
noteworthy findings for the researchers studying 
academic achievement of individuals in this age 
group. Additionally, this study is the first research study 
to examine the nature of latent classes that are formed 
through performing MRM analysis to an intelligence 
test and differentiation of item parameters among 
these classes.
 
Another purpose of the present study was to identify 
whether adding covariate variables to the model 
would cause a significant improvement in the model 
or not. To this end, ages and genders of the students 
who took the test were added to the model and 
thereby it was aimed to reveal the effect of these 
variables on both latent classes and obtained model 
parameters. 

The current study sought to answer the following 
research problems. As a result of the MRM analysis; 

1) How many latent classes are there in the first 
model? How are item difficulties distributed in 
terms of latent classes? In which context do 
the latent classes differ according to these 
distributions? 

2) How do fit indices of the concomitant model 
which is formed through adding gender and 
age variables to the first model as covariates 
differ from the first model?

3) How are item difficulties distributed in 
concomitant model in terms of latent classes? 
In which aspects does this distribution differ 
from the first model or in which aspect are they 
similar?

Method

Participants

The data set used in this study was obtained from 
an implementation of Turkey norm study of ASIS, in 
which 4561 4-12 aged students from different regions of 
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Turkey selected through considering statistical region 
units identified by Turkish Statistical Institute took the 
intelligence test. Within the scope of the current study, 
data of 2536 7-12 aged students, of whom the youngest 
attended to elementary education, were used out of 
the data in Turkey norm study of ASIS. 

Data Collection Tools

In this study, responses to 20 items belonging to VSPM 
dimension of ASIS were analyzed. ASIS (2016) is an 
intelligence test with seven sub-dimensions, developed 
to be implemented with 4-12 aged individuals. The 
number of total items in ASIS is 256. The responses 
given to 20 items belonging to VSPM dimension, used 
in this study, were obtained from norm study of ASIS.. 

Data Analysis

To answer the research questions, MRM analysis 
was performed in the first phase using responses of 
2536 students to 20 items. In this step, the analyses 
were run without using any manifest variables. 
It is recommended to exclude participants who 
responded correctly or incorrectly to all of the items 
from the analysis because they do not contribute 
to conditional likelihood of item parameters (Rost, 
1990).  Therefore, eight students who did not have any 
correct answers were excluded from the study and 
the analyses were performed with the data of 2528 
participants. 

In Mixture IRT models, like latent class analysis, there 
is not a priori exact decision regarding the number 
of groups to emerge. For this reason, a vector is 
formed for potential latent class number. This vector 
is composed of whole numbers starting from 1 and 
continuing till a potential maximum value in order to 
identify the optimum number of latent classes with an 
exploratory approach. The optimum number of latent 
classes is identified for the model with the help of fit 
statistics obtained for each latent class number. Since 
latent class models formed in MRM are not nested in 
each other, information-based indices are used to 
evaluate models. Model-data fit increases as these 
values decrease. Of these indices, Akaike Information 
Criterion (AIC), Bayesian Information Criterion (BIC) and 
Integrated Completed Likelihood Criterion (ICL) were 
used within the scope of this study. It is recommended 
in the literature that when there are contradictions 
among them, BIC values which are less biased should 
be used (Cubaynes et al., 2012). Accordingly, the 
optimum number of latent classes was identified 
through considering BIC values primarily. In the next 
step, the distributions of estimated item difficulties 
for each latent class were examined, and in which 

contexts these latent classes differed was evaluated 
based on these distributions.

In the second phase of the study, the concomitant 
model was obtained through adding the participants’ 
ages and genders to the model as covariate 
variables, and it was tested whether this new model 
had significant difference from the first model, 
which enabled the researcher to identify which of 
the manifest covariates could provide additional 
information. In the last phase, the similarities and 
differences of latent classes which emerged in the first 
and second models were put forth through examining 
item difficulty distributions in both models. The 
maximum number of latent classes was determined 
as four for both models. 

The MRM analyses were run with psychomix (v1.1-8; 
Frick et al., 2012) package defined in R (R Core Team, 
2020) with the method based on mean and variance 
of score distribution as suggested by Rost and von 
Davier (1995). 

Results

Within the scope of the study, first, BIC values were 
obtained in order to decide on the number of latent 
classes for the first model in which manifest variables 
were not used (see Table 1). Since the lowest BIC value 
was obtained for three-class solution, it was decided 
that the optimum latent class number for the data set 
was three. 

Table 1
Fit Statistics for Different Number of Classes

Model
Number of 
Classes

Fit Indices

AIC BIC ICL

Model 1 (no 
covariate 
variables)

One class 39885.27 40007.81 40007.81

Two classes 39105.26 39356.17 40171.90

Three classes 38613.89 38992.03 39811.67

Four classes 38693.62 39086.01 40131.71

Model 2 
(Concomitant 
Model)

One class 39885.27 40007.81 40007.81

Two classes 39004.16 39266.75 40085.41

Three classes 34998.89 35395.68 36105.01

Four classes 38442.66 38845.29 39517.65

With respect to VSPM, the participants were separated 
into three homogenous sub-groups. The histogram 
graph was also created to see posterior probabilities 
aiming to evaluate the three-component model 
(see Figure 1). In the U-shaped graph, the posterior 
distributions of the observations are seen as low or 
high, which reveals that the components (classes) are 
separated well enough at an acceptable level.
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Figure 1
Rootogram of posterior probabilities in the 3-component 
(class) MRM on VSPM data
.

In the next step, the distributions of item difficulties for 
each latent class were obtained (see Figure 2). In the 
interpretation of the results, attention should be paid 
that the items are sequenced from simple to hard 
according to CTT item difficulties. In the examination 
of the obtained values, it is seen that item difficulty 
parameters of three classes are in parallel to a certain 
degree. Regarding the difficulties belonging to Class-2 
(Component-2) shown in red, it can be argued that 
the first 14 items are perceived as easier for this class 
compared to other classes, and there is a relatively 
linear graph until this item.  It catches attention that 
there are some bends between 10th and 14th items 
and there is a general increase in the difficulty values 
of the items. Starting with the 15th item, there are 
dramatic changes in difficulty values. Accordingly, 
it can be suggested that the last six items are very 
difficult for Class-2. The obtained difficulty values 
reveal that very few participants in this class could 
answer these items correctly. 

With regard to difficulty parameters of Class-1 
(Component-1), shown in blue, it is observed that the 
difficulty values of first part of the items for this class 
are between the values for the other two classes. In 
addition, it is seen that the values for Class-1 are in 
high parallelism with item difficulty parameters of 
Class-3. Such that, the difficulty levels of these two 
classes are very close to each other in the 15th and 
16th items, and it is predicted as almost the same for 
the 17th item.   However, starting with the 18th item, 
the case in the last three items is very similar to the 
case in Class-2, and there is a dramatic change in 
item difficulties. That the values obtained in Class-1 
and Class-2 for the last three items are parallel to 
each other stands out. Finally, the difficulties obtained 
for Class-3 (component-3) were evaluated. The initial 

items have a difficulty level slightly below 0, and item 
difficulty levels are in a slightly increasing fashion as 
the number of items increase. Accordingly, it can be 
suggested that the item difficulties of Class-3 form a 
line graph with a small slope. What is remarkable for 
Class-3 is that there are not dramatic changes in the 
graphs, and the highest value of the item difficulties 
is 3.5 

Following a detailed examination of the graphs, latent 
classes were named. Considering that the difficulty 
values obtained for all three classes are different from 
each other but the item parameters follow a similar 
path until certain items, as also highlighted in the 
interpretation of graphs, it can be deduced that the 
classes were formed according to the participants’ 
VSPM levels. That the classes were formed in line 
with VSPM levels is also supported by the fact that in 
Class-1 and Class-2, there are dramatic increases in 
item parameters as the item difficulty level increases, 
which is higher in Class-2, and the fact that item 
difficulties form a graph which could be labeled as 
linear in Class-3. Accordingly, since there are dramatic 
increases in item difficulties in the last six items, it is 
considered that Class-2 is the group which has the 
lowest VSPM level, and Class-1, in which a similar case 
emerges in the last three items, consists of medium-
level individuals. Finally, it can be stated that Class-3, 
in which item difficulty indices vary at a very narrower 
range compared to the other groups and in which 
extreme values are not observed even in the items 
that can be described as very difficult (The highest 
difficulty value obtained is 1.9 except for the last item 
with the value of 3.5), is the group with the highest 
VSPM level. 

Figure 2
Item profiles for the 3-class MRM (Model-1) on VSPM 
data

In the second phase, the variables of gender and 
age were added to the model as covariate variables 
to answer the second and third research questions. 
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In the examination of fit indices (see Table 1), it was 
observed that, as the case in the first model, the 
lowest values were also obtained with three latent 
classes in this concomitant model which was formed 
through adding the manifest covariates. Therefore, 
it was deemed appropriate to compare three latent 
classes in both models. As mentioned beforehand, in 
mixture models, likelihood ratio test cannot be used 
in order to decide on the number of components. 
However, a comparison between the two models 
could be carried out with this test because the first 
model with three latent classes in which covariate 
variables were not used was nested in the second 
(concomitant) model which was also formed with 
three latent classes. The likelihood ratio test which 
yields a test statistics of 1809.93 (p< .001), reveals that 
the concomitant model have a much better fit than 
the first model. In other words, the covariate variables 
improved the model significantly. 

Another property of psychomix (Frick et al., 2012) 
package is that it can identify which of the covariates 
that formed the concomitant model have more effect 
on the formation of latent classes. As a result of the 
analysis to this end, it is observed that both covariates 
have effect; however, the absolute effect of age is 
greater than gender. 

In the final phase of the study, the distribution of 
item difficulties obtained for latent classes in the 
concomitant model was examined (see Figure 3), and 
in which aspect this distribution differed from the first 
model was revealed. 

In this distribution, as in the first model, it is seen that 
the difficulty levels belonging to the initial items, 
in particular, are parallel to each other. However, 
differently from the first model, the item difficulty 
levels of the classes are much closer to each other. In 
particular, it is observed that item difficulty levels of 
Class-3, shown in green, and Class-1, shown in red, are 
very close to each other for the first ten items. It is also 
observed that the difficulty values of Class-2 have a 
rippled pattern starting with the 10th item and they 
get very high values starting with the 15th item. The 
horizontal pattern followed by the difficulty values 
of the initial items and the change in 10th-14th items 
lend their support to the fact that Class-2 is identical 
with the Class-2 in Model-1. On the other hand, it 
is also evident that the great change in the item 
difficulties in the first model starting with the 15th item 
is also observed in the concomitant model; however, 
this change is relatively less aggressive in the latter 
model. It is possible to say that Class-1 and Class-3 are 
identical with Class-3 and Class-1 in the first model, 
respectively. Accordingly, similar to the first model, 
the difficulty levels of these two classes progress in 

parallel with each other, they get closer to each other 
and they get almost the same value in the 17th item. 
It is observed that there are dramatic increases in the 
item difficulty values for the last three items in Class-3, 
as is for the Class-1 which is its counterpart in the 
first model. Class-1 has a very similar distribution with 
Class-3 which is its identical in the first model. 

The results of the current study indicate that the 
classes were formed in line with VSPM levels in a similar 
way with the first model. The number of the classes 
is the same and these classes are similar to their 
counterparts in the first model with respect to various 
characteristics. In particular, for Class-1, which consists 
of students with high VSPM level, very similar graphs 
were obtained in both models. The item difficulty 
levels of Class-2, involving students with the lowest 
VSPM level, started with higher values compared to 
the first model. It was also observed that the changes 
seen in the final items were not as dramatic as the 
changes in the first model. The difficulty distributions 
obtained in the class which included students with 
medium VSPM level were similar to the distributions 
in the first model; however, the amount of increase in 
the difficulty values of the last three items (differently 
from the first model) were much more higher than the 
values of Class-1. 

To compare the first and second models, lastly, the 
numbers of individuals in the classes in the first and 
second models were compared. Accordingly, it was 
revealed that the class in the concomitant model 
which consisted of individuals with low VSPM levels 
expanded by 28% compared to the first model. The 
class in the concomitant model which consisted of 
individuals with medium VSPM levels expanded by 
32% compared to the first model. Finally, the class 
consisting of individuals with high VSPM levels was 
examined and it was found out that it decreased by 
15% compared to the first model.

Figure 3
Item profiles for the 3-class MRM (Model-2) on VSPM 
data
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Discussion and Conclusion
  
Within the scope of the current study, VSPM sub-test 
of ASIS battery was analyzed with MRM. In the first 
phase of the study, no covariate variables were used. 
The number of latent classes was decided as three 
and it was evaluated that the latent classes which 
were obtained through their difficulty distributions 
were formed according to the individuals’ VSPM levels 
as low, medium and high.  In the second phase, the 
concomitant model was formed through adding 
gender and age variables as covariates, optimum 
number of classes was found as three as well, and it 
was observed that the covariate variables improved 
the model significantly compared to the fist model. 
Of these variables, it was revealed that age had a 
higher contribution to the model and gender had a 
relatively lower contribution. In the second model, 
similar to the case in the first model, the latent classes 
were formed according to the individuals’ VSPM 
levels as low, medium and high. The comparison of 
the item difficulty distributions of identical classes in 
both models suggested that they were mostly similar 
yet some items differed to some degree. Accordingly, 
after adding covariate variables to the model, 
changes were observed in the distribution of item 
difficulties of some items. Besides, it was concluded 
that the membership number of classes that had 
similar characteristics in both models changed in the 
range of 15% and 30%. 

The results obtained in this study were first examined 
with respect to the use of covariate variables in MRM 
analysis. It was highlighted in some former studies 
that adding manifest covariates contributed to 
identification of latent classes in Mixture IRT models, 
revealing the differences among these classes (e.g., 
Choi et al., 2015; Li et al., 2016), and prediction of 
parameters (Dai, 2013). The findings in the present 
study overlap with some of these studies. On the other 
hand, it was observed that the manifest covariate 
variables used in this study had an effect on class 
membership to some degree but they did not cause 
a change in the number of classes.  This finding is in 
agreement with those obtained by Karadavut et al. 
(2019). 

The finding of the current study that age and gender 
had a high degree of contribution to the model, gender 
with a greater degree, is in line with those of previous 
studies in the literature. A number of studies unearth 
that there is increase in individuals’ visual processing 
memory and tasks related to it until the ages of 11-12 
(Brockmole & Logie, 2013). Heyes et al. (2016) observed 
that visual processing memory improved precision 
in middle childhood. There are other studies in the 
literature lending support to this finding (Cowan et 

al., 2010; Cowan et al, 2011). Voyer et al. (2017), who 
put forth the relationship between visual processing 
memory and gender with a comprehensive meta-
analysis study, reported that visual processing memory 
differed significantly in terms of gender yet this was at 
a very low level. 

The studies in the literature broadly lend their support 
to the effect of covariate variables on the model 
identified in the current study. Yet these studies 
predominantly depend on CTT based measurements. 
In the studies aimed at measuring intelligence, as 
in the current study, the use of MRM analysis may 
contribute more to understanding the nature of the 
characteristic subject to measurement. 

The present study focused on visual processing 
memory which is a critical aspect of intelligence. On 
the other hand, this would be a fruitful area for further 
work. Future studies may exert similar procedures for 
the other aspects of intelligence. It may be interesting 
to identify the changes in the model when different 
manifest variables other than gender and age or 
latent covariates are added, and compare these 
changes with findings of the current study. 

The factors affecting the development of children’s 
basic reading and basic mathematics abilities have 
always been a major area of interest for researchers. 
The current study dwelled on a factor that is known to 
be closely related to basic reading and mathematical 
abilities. Further research should be undertaken to 
explore different aspects of intelligence that may be 
closely related to children’s academic achievement.
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