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Abstract

Introduction

In this study, we designed and applied physical computing 
lessons for elementary 6th-grade students based on the 
software education guidelines in the Korean 2015 Revised 
National Curriculum (Ministry of Education, 2015a). The 
participants of this study were ten 6th-grade students of an 
elementary school in Gyeonggi-do province in Korea. The 
physical computing lessons used in this study supported the 
active interaction of the digital world and the physical world 
by constructing a physical model using specific media, and 
controlling it with a program. In order to understand the 
changes in the students’ computational thinking after the 
class, we analyzed these changes in terms of computational 
concept, computational practice, and computational 
perception. Research has shown that physical computing 
lessons materialize students’ computational concepts 
through computational practices, and improve their 
computational perspectives through the use of authentic 
contexts. We expect that the physical computing lessons 
and analysis tools developed through this study will provide 
educational implications for future software education.

Computer science plays a vital role in today’s 
technologically and globally connected world. Thus, 

it is essential to introduce computing ideas to students 
early in their schooling (Yadav, Hong, & Stephenson, 2016). 
To prepare for this social change, countries such as the 
United States, the UK, Australia, India, and Israel view 
computational thinking as a key competency that future 
generations should possess and be able to apply to various 
subjects, such as mathematics and science (Ryu & Han, 
2015). The school environment has a uniquely large impact 
on future generations, as educators continuously prepare 
their students for technology-driven futures (Griffths, Nash, 
Maupin, & Mathur, 2020).
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Papert (1996) first introduced the concept of 
computational thinking, while Wing (2006) later 
defined it as a fundamental ability that allows people 
to design and think using the language of computation. 
In other words, computational thinking involves 
numerous skills, such as logical thinking, algorithm 
selection, and systematic thinking, which can be used 
to solve problems in a variety of learning contexts 
and in daily life, not only in professional computer 
science fields (Tsai, Wang, & Hsu, 2019). Denning (2005) 
suggested that computational thinking today includes 
the use of abstraction, mathematics for algorithmic 
development, and efficient problem solving.

In this regard, the Korean Ministry of Education (MOE, 
2015b) emphasizes the importance of software 
education in the formal curriculum with the goal of 
strengthening competence, including information 
ethics and attitudes, while presenting computational 
thinking as a key competency of software education. 
For elementary school, the Ministry proposed 
expanding and reorganizing the existing contents of 
the Information and Communication Technologies 
(ICT) application into basic software literacy education 
(MOE, 2015a). Educational programming languages 
have been applied to this end (Song & Gil, 2017; Shin 
& Bae, 2015). Other tools include robots (Marion et 
al., 2017) and various types of educational media as 
physical computing tools (Alimisi, 2013; Bakke, 2013; 
Chandra, 2010; Felica & Sharif, 2014; Kim & Kim, 2016; 
Resnick, 2006). 

Since 2019, software education has primarily been 
taught in grades 5 to 6, and efforts are under way to 
address the lack of learning time to cultivate the core 
competencies of software education (Han, Cheong, & 
Lee, 2017). To address the limited amount of available 
class time, which is a significant problem facing those 
who design computing lessons, some authors have 
studied computing not solely as a practical subject 
(Kim, 2015; Ryu & Han, 2015), but in relation to other 
subjects, such as mathematics and social studies 
(Shin, Cho, & Kim, 2013), as well as methods of applying 
it to different creative activities (Kim, 2015; Kim, Kim, & 
Ryu, 2013; Song, 2013). In addition, researchers have 
designed educational programming languages, such 
as Scratch and Entry, and various physical computing 
tools and software to enable students to learn through 
experience, considering the developmental level of 
elementary school students (Anglei et al., 2016; Kim & 
Lee, 2014)

Therefore, in order to implement software education, 
it is necessary to study educational media and various 
evaluation methods and to introduce different types 
of content. In particular, because computational 
thinking is emphasized as a core competency of 
software education, research is needed on how 

students express computational thinking, and how 
they can be evaluated. However, considering the 
limitations of approaching only the cognitive aspects 
of computational thinking (Kim, 2009), or of evaluating 
it as a learning output (Seiter & Foreman, 2013), it is 
necessary to study various aspects of how students 
understand computational concepts. For example, 
students must not only know the concepts, but also find 
the changes of computational concepts in practice. 
This means approaching computational thinking as a 
process of problem solving (Wiggns & McTighe, 2005; 
Bers, 2010; CSTA, 2012; Denning, 2017; Wing, 2006), in 
the sense that a concept is only meaningfully learned 
when a student can use it to solve a unique problem.

To consider computational thinking in terms of the 
harmony of thinking and computing technology, it 
is necessary to examine students’ computational 
concepts in actual computational practice. In 
physical computing lessons, activities that explore 
changes in behavior using programming and robots 
are expected to help students shape computational 
thinking through the harmonization of concepts and 
practice by implementing students’ ideas through 
computing technology. In addition, in order to 
continuously demonstrate computational thinking, it 
is necessary that students’ active attitudes change 
through recognition conversion. Therefore, by 
assessing changes in computational perspectives 
in the classroom, we expect that this work will have 
implications for strengthening the attitude and 
capacity emphasized in software education. In 
addition, the appropriate result can be benchmarked 
against the relevance of ICT use within the wider 
personal, cultural, social and psychological context of 
a person’s daily life (Talaee & Noroozl, 2019).

Therefore, in this study, we aimed to analyze the 
characteristics of computational thinking by designing 
physical computing lessons and applying them to 
elementary school students. In addition, we looked at 
the changes and features in computational concepts, 
computational practices, and computational 
perspectives in order to examine various aspects of 
computational thinking through physical computing 
lessons. In order to support the development of 
computational thinking, we provide concrete 
instructional design and application for physical 
computing lessons, implications for evaluation, and 
ideas for follow-up research.

The following research questions guided this study: 

1. How was the physical computational class 
designed for elementary school students? 

2. How did computational thinking appear to 
elementary school students who experienced 
the physical computing classes?
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Research Background

Physical Computing

For more than 30 years, constructionist tool kits, 
robotics, and physical computing kits have been 
present in educational contexts (Przybylla & Romeike, 
2014). As Resnick (2007) observed, “In today’s rapidly 
changing world, people must continually come up 
with creative solutions to unexpected problems. 
Success is based not only on what you know or how 
much you know, but on your ability to think and act 
creatively.” In this respect, the physical computing 
tools that connect the digital world with the real 
world are expected to provide students with creative 
experiences for problem solving.

Physical computing covers the design and realization 
of interactive objects and installations, and allows 
students to develop concrete, tangible products that 
arise from the learner’s imagination. This can be used 
in computer science education to provide students 
with interesting and motivating access to the different 
topic areas of a subject in constructionist and creative 
learning environments (Przybylla & Romeike, 2014). 

The physical computing environment uses sensors 
and actuators that can replace the human senses. 
A microcontroller can be used as a learning medium 
that is capable of robot programming (Kim & Kim, 2016; 
Seo & Kim, 2016). 

Physical computing tools can be divided into robot, 
board, or modular types. In the case of robot type 
tools, a physical output device, such as a motor, is 
reinforced. Programming allows us to move robots 
and control output devices, such as sounds or lights, 
and if sensors are used, we can interact with the real 
world, such as by following lines or avoiding obstacles. 
Board type refers to electronic boards including 
microcontrollers. Because it is necessary to understand 
electric circuits and apply electronic knowledge, it 
is not easy to apply this type of robotic learning in 
elementary school classes.

Finally, modular type means that various input and 
output devices are assembled, connected to a 
microcontroller, and controlled using an educational 
programming language. Ultimately, students will be 
able to experience the process of designing, building, 
and programming their own robots. The modular 
type has the advantages of both robot type and 
board type, and it can help give learners practical 
experience, which can aid them in finding ideas and 
solutions for real life problem solving.

The use-modify-create model (Lee et al., 2011), a 
learning model for software education, emphasizes 
learning by making through hands-on experience. 
In particular, the authors of the model pointed out 
that environments should encourage active learning 
through play. The model also emphasizes that learners 
should experience inventions, rather than imitations or 
implementations of algorithms (Futscheck & Moschiz, 
2010).

Physical computing takes computational concepts 
into the real world, so students can use those concepts 
in authentic environments. Physical computing 
activities are strongly connected to the dimensions 
of computational thinking, namely, abstraction, 
algorithmic thinking, automation, decomposition, 
debugging, and generalization (Psycharis et al., 
2017). Sometimes, digital making is also referred to 
as tangible programming (or physical computing, 
digital fabrication, or creation of graspable user 
interfaces). Digital making is simultaneously a tangible 
representation of digital CT that moves beyond 
text-based computer programming and coding 
(Kotopoulos et al., 2017).

Physical computing is a form of computing science 
that is connected to the arts, which leaves a great 
deal of room for creative work in the classroom. 
Additionally, physical computing allows for various 
connections to other STEM subjects; for example, 
simulation of behavior relates to biology, collection 
and analysis of measurements relates to physics, and 
logical operations relate to mathematics (Schulz & 
Pinkwart, 2015). Ongoing research aims to determine 
the effects of physical computing on students in 
computer science classes by investigating its impacts 
on students’ motivation, creativity, constructionist 
learning, learning success, growth in competences, 
and understanding of computer science and 
computing systems (Przybylla & Romeike. 2014). 

Kabátová and Peárová (2010) suggested certain points 
to consider when designing a class. For example, 
activities with robotic models, programmable kits, and 
toys are good opportunities to organize the lessons in 
a constructionist way. The constructionist ideas and 
principles (Papert, 1999; Rusk et al., 2008) we promote 
in our lessons are: 

- learning by doing, genuine achievement, 
hard fun and playful learning, learning through 
designing, 

- technology as building material combined 
with artistic materials, and 

- taking time, freedom to make mistakes, 
teamwork.
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Taken together, physical computing that can take 
advantage of tools, including board, modular, 
and robotic type tools, can help students learn by 
building physical systems that connect the physical 
and computing worlds. Robotics exemplifies an 
appropriate use of technology to create meaningful, 
open-ended, problem-solving activities (Felica & Sharif, 
2014). In addition, lessons that use physical computing 
tools provide opportunities for students to understand 
abstract concepts through realistic experiences, 
support students in shaping their ideas, and facilitate 
communication and the fostering of social skills.

Computational Thinking

Regarding computational thinking, Wing (2006) 
outlined the basic skills necessary for all people 
living in the 21st century, such as reading, writing, 
computation, and using computing technology to 
solve problems. She also emphasized that abstraction 
and automation are key elements of computational 
thinking. Computational thinking uses abstraction 
and decomposition to attack a large, complex task 
or design a large, complex system. Computational 
thinking is a fundamental skill for everyone, not just 
for computer scientists; and to reading, writing, and 
arithmetic, we should add computational thinking to 
every child’s analytical ability (Wing, 2008).

Bers (2010) defined computational thinking as a 
type of analytical thinking that has many similarities 
to mathematical thinking (e.g., problem solving), 
engineering thinking (design and evaluation 
processes), and scientific thinking (systematic 
analysis). The term grew out of the pioneering 
work of Papert and colleagues on design-based 
constructionist programming environments; it refers to 
ways of algorithmically solving problems, and to the 
acquisition of technological fluency (Papert, 1980).

Yadav, Hong, and Stephenson (2016) emphasized the 
importance of thinking to all students by suggesting 
algorithms, abstraction, and automation as key 
elements of computational thinking. The authors 

also emphasized that teachers’ understanding of 
computational thinking is essential for incorporating it 
into the classroom environment.

The essence of computational thinking involves 
breaking down complex problems into more familiar/
manageable sub-problems (problem decomposition), 
using a sequence of steps (algorithms) to solve 
problems, reviewing how the solution transfers to 
similar problems (abstraction), and finally determining 
if a computer can help more efficiently solve those 
problems (automation). These computational thinking 
steps are foundational to computer science, but 
their power and utility extend far beyond any single 
discipline. We believe that the computational thinking 
ideas outlined in this paper are key to moving students 
from merely being technology literate, to using 
computational tools to solve problems and represent 
knowledge. Developing teachers’ understanding of 
computational thinking and highlighting connections 
to their curricular context is key to successfully 
embedding computational thinking in K-12 classrooms.
Tedre and Denning (2016) pointed out that CT as a 
concept has been studied for a longer time than 
suggested by Wing (2006), and it is necessary to 
know about problems, ideas, and risks that have 
already been solved during this history of CT. Also 
they examined a number of threats to CT initiatives: 
lack of ambition, dogmatism, knowing versus doing, 
exaggerated claims, narrow views of computing, 
overemphasis on formulation, and losing sight of 
computational models. 

Brennan and Resnick (2012) suggested a way of 
approaching the three aspects of computational 
thinking in a study using Scratch. Having articulated 
the framework for computational thinking (concepts, 
practices, and perspectives), they described 
three approaches to assessing the development 
of computational thinking in young people who 
are engaging in design activities with Scratch. 
Computational practices focus on the process of 
thinking and learning, moving beyond what the 
students are learning to how they are learning 

Table 1
Strength and Limitations of Assessment Approaches

Approach Concepts Practices Perspectives

Approach #1: 
Project Analysis

Presence of blocks indicates 
conceptual encounters

N/A 

N/A (possibly by extending 
analysis to include other 
website data, like com-
ments)

Approach #2: 
Artifact-Based Interviews

Nuances of conceptual 
understanding, but with 
limited set of projects

Yes, based on own authentic 
design experiences, but subject 
to limitations of memory

Maybe, but hard to ask 
directly

Approach #3: 
Design Scenarios

Nuances and range of con-
ceptual understanding, but 
externally selected projects 

Yes, in real time and in a novel 
situation, but externally selected 
projects

Maybe, but hard to ask 
directly

(Brennan & Resnick, 2012, p. 22)
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(Brennan & Resnick, 2012). Table 1 shows the limitations 
of each method of analyzing computational thinking.

Alternatively, researchers have also conducted 
studies on computational thinking in terms of subject 
and problem solving. Weintrop, Beheshti, Horn, Orton, 
Jona, Trouille and Wilensky (2016) discussed the 
definition and characterization of computational 
thinking in secondary mathematics in conjunction 
with STEM education. 

Methodology

Lesson Design

In this study, to assess students' practical understanding, 
we analyzed computational thinking centering on the 
computational practices that appeared in class. To 
this end, a learning environment in which the students’ 
own ideas could be manifested was provided by 
utilizing physical computing tools that support active 
interaction between the physical and computing 
environments.

In these physical computing lessons, the subject, 
content, and evaluation method were designed 
to teach the algorithms and programming areas 
emphasized in the guidelines for software education 
(Ministry of Education, 2015b) based on the use-
modify-create model of robots (Lee, Martin, Denner, 
Coulter, Allen, Erickson et al., 2011).

Furthermore, the “Maze Escape” and “School Bus” 
lessons were developed and applied in conjunction 
with mathematics and social studies concepts. The 
classes explored the core concepts, factual content, 
and achievement skills of elementary school practical 
art subjects. In order to develop the subjects of the 
lessons, a preliminary study was conducted on four 5th 
graders and twenty 5th – 6th graders over the course 
of one year. In addition, whether real life application, 
inquiry, enjoyment, and cooperation were possible 
(Shin & Bae, 2014), and whether it was possible to 
connect with different regions (Choi, Choi, Ahn, Hong, 
& Jung, 2015) were all considered. 

Participants

The subjects of this study were ten male 6th grade 
elementary school students in Gyeonggi-do province, 
Korea, who participated in the class voluntarily 
after being informed of the purpose of this study in 
advance. Before the students participated in the class, 
a separate introductory session was used to explain 
the purpose and contents of the study, and consent 
forms were used to obtain the student’s and guardian’s 

signatures. Physical computing lessons were held 
every Friday for a total of six sessions, 80 minutes per 
session; before each class started, 80 minutes of extra 
time was provided to help students understand the 
medium. The physical computing tool used LEGO 
bricks to assemble the body of a robot. 

Data Collection & Analysis 

In this study, quantitative and qualitative data were 
collected in order to analyze changes in students' 
computational practices following physical computing 
lessons. The main researcher participated in the 
research, introduced class topics, and observed the 
students’ problem solving process; she also played the 
role of a teacher in assisting the study participants with 
overcoming any difficulties experienced during the 
physical computing lessons. In addition, the students’ 
normal teachers were encouraged to help with class 
recording and collection of various materials. The 
rubrics and test tools used in the research process were 
revised and supplemented based on the results of the 
preliminary study through consultations with experts 
in elementary education and robotics education, and 
elementary school teachers.

Data collection was carried out through a 
computational concepts test conducted before 
and after class, observation of class participation, 
interviews, activity sheets, and anecdotal records. For 
data analysis, quantitative and qualitative analyses 
were performed using a hybrid research method to 
grasp the computational thinking of students who 
applied the physical computing lessons. 

For the quantitative analysis, computational concepts 
test scores, worksheets, and interviews conducted 
using a computational practices rubric, as well as 
data collected through anecdotal records, were 
statistically analyzed. For the qualitative analysis, we 
attempted to understand students’ computational 
thinking processes by observing students' 
participation in class, interviewing the students, and 
analyzing outputs and activities. In addition, a single 
case study was conducted to assess changes in 
individual computational thinking, and we attempted 
to explore certain aspects of computational thinking 
in detail through individual examples of how 
computational concepts, computational practices, 
and computational perceptions appear in physical 
computing lessons.

Assessment 1: Computational Concepts

The UK Bebras Computational Challenges (2015) is 
an online competition open to students in the UK 
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and English-speaking international schools around 
the world; it requires intelligence, but no previous 
knowledge. The hope is that the competition will 
increase youngsters’ general interest in computer 
science and help them to understand that 
computational thinking has far-reaching applications 
in solving all sorts of life’s problems. 

In the computational concepts test, a pre-test and 
post-test were conducted using the same question; 
no answer to the test question was provided. It was 
conducted at 2-month intervals, including the class 
time between the pre-test and post-test. To measure 
computational concepts, the participating students 
had 40 minutes to solve 15 questions. However, 
when we scored their work, we did not use the 
additional scoring rubric as required by the UK 
Bebras Computational Challenges. Instead, correct 
answers received 1 point, and incorrect answers 
received no points (i.e., points were not deducted for 
incorrect answers). The post-test Cronbach’s alpha for 
computational concepts excluding items 3 and 9 was 
.764.

Assessment 2: Computational Practices

To assess computational practices, we reconstructed 
the relevant rubric based on the three areas of 
experience—problem-solving, algorithm, and 
programming—presented in the MOE’s Software 
Education Guidelines (MOE, 2015b). We evaluated 
the experiential domain of the problem-solving and 
algorithmic processes using revised rubrics based on 
Choi (2014) and Brennan, Balchm, and Chung (2015), 
respectively. We reconstructed the programming 
experience area by referring to the robot design 
rubric of the For Inspiration & Recognition of Science & 
Technology LEGO League (2015).

We also conducted interviews with the students 
based on Brennan and Resnick’s (2012) observation 
that it is difficult to evaluate computing practices 
solely by analyzing output. The interview questions 
gauged how students understood and structured 
the problems, searched for solutions, and understood 
the role of programming in class activities. Students 
introduced their projects and explained their problem 
solving methods and the ideas or people who helped 
them. In addition, they explained the differences 
between how to program, and how to apply and 
explain the commands and solutions. To help students 
remember, the interviewer used their own output as 
an example. Table 2 shows some interview items that 
were used to evaluate computational practices.

Based on the actual experiences of the students 
themselves, we conducted two interviews using the 
students’ outputs immediately after the end of each 
activity topic, considering the limitation of memory. 
We analyzed the reliability of the three graders in 
the scoring of the students’ computational practices. 
Table 3 presents the inter-scorer reliability, assessed 
using Pearson’s correlation coefficient.

Assessment 3: Computational Perspectives

Brennan, Balchm, and Chung (2015) divided 
computational perspectives into three areas: 
expressing, connecting, and questioning. They 
analyzed computational perspectives by looking at 
students’ perspectives of physical computing lessons 
(perspectives of expression, cooperation, and use). 
For this study, an anecdotal record consisted of two 
narrative questions and five multiple choice questions, 
and students wrote anecdotes for each class.

Table 2
Interview Items for Evaluating Computational Practices

Strands Interview details

Understanding and structuring 
the problem

Introduce your project.

Searching for problem solutions
How did you solve the problem? Did you have any ideas or people who helped you 
solve the problem? Have you made any changes in today’s activity? Why did you fix it 
like that? Describe how you tried to solve the problem.

Understanding programming
How did you program it to solve the problem? What commands did you use? Please 
explain the commands used. Was there a difference between what you expected, and 
what was real?

Table 3 
Inter-Scorer Reliability: Computational Practices

Items Activity themes A–B A–C B–C

Worksheets
#1 Maze Escape .994** .797** .833**

#2 School Bus .748* .795** .808**

Interviews using outcomes Total .934** .911** .875**
** p < .01
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Results and Discussion

Physical Computing Lessons

We conducted each physical computing lesson three 
times, centered on two themes, maze escape and 
school bus. Based on the practical subjects of the 
curriculum, which was last revised in 2015, the subjects 
of mathematics and social studies were linked to 
each other. We considered whether a topic was 
explored, used in daily life, facilitated cooperation, or 
caused pleasure (Shin & Bae, 2014), whether the use–
modify–create model (Lee, Martin, Denner, Coulter, 
Allen, & Erickson, 2011) or the algorithmic invention 
model (Futscheck & Moschiz, 2010) could be applied, 
and whether the lesson could be connected with 
the community (Choi et al., 2015). Table 4 shows the 
contents of the lessons and activities conducted in this 
study.

The main activity of the physical computing lessons 
was to create and program robots; this allowed 
students to invent algorithms through experience. First, 
in the “Analyze problem” stage, the students identified 
a problem and clarified that problem by analyzing 
the given situation and conditions; at this point, the 
students removed any unnecessary information from 
consideration. Second, in the “Find ideas” stage, the 
students collected data and generated various ideas 
to identify the best ones; in addition, we constructed 
robots, identified the properties of the media, and 
collected ideas for problem solving. Third, in the 
“Formulate algorithms” stage, we designed a method 

of realizing an idea and designed a concrete process 
that included a program to specify the necessary 
algorithm. Fourth, in the “Play algorithms” stage, the 
program was tested based on each algorithm. Fifth, in 
the “Reflect algorithm” stage, problems were identified 
and corrected while the results were evaluated. 
Students checked their problem-solving processes 
and algorithms to find and fix errors. They also shared 
their results and conducted self- and peer evaluations 
in order to objectively view their own output. The 
students produced robots as a means of solving 
problems by programming and experimenting in 
teams of two. The students built and moved the robot 
themselves, embodied their ideas with algorithms, 
and debugged their programs through execution. 
Real life-based problematic situations helped students 
immerse themselves in the learning process, and 
easy-to-edit robots and programming tools helped 
students to check their ideas. Figure 1 shows the robot 
and maze used in class.

Students observed the maze, moved like a robot, and 
discussed their ideas with other students. In addition, 
the discussion was organized using pictures, texts, and 
symbols. Students acted like robots, extracting the 
elements necessary for movement, understanding 
problems, and finding ideas. Through this process, the 
robot’s behavior was sequentially arranged, and each 
algorithm was created. The students’ algorithms were 
embodied through programming, and modified and 
supplemented through practice. Figure 2 illustrates the 
students’ ideas that allowed the robot to escape the 
maze.

Table 4
Physical Computing Lessons: Contents and Activities

Lesson steps 
Activity themes

#1. Maze Escape #2. School Bus

Analyze problems and find 
ideas

Make robots using basic building instructions 
Explore robot movement

Build a town map and school bus, share 
ideas, and make a plan with  peers

Formulate and play algorithms
Modify robots, get directions using robots, 
programming, and testing

Recreate school bus, do programming 
and test

Play and reflect algorithm Execute maze escape Optimize school bus movements 

Figure 1
Students’ Robot and Maze Escape Activities 
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In the maze escape class, the students used a basic 
type of robot to allow them to focus on algorithms and 
programming strategies. In order to move through the 
maze, the students modified the robot in their own 
ways. The maze was divided into two stages, which 
were delineated by a middle point and a final goal 
point, so the students could solve the task step-by-
step. This activity used assembly diagrams to create 
and test basic models, so the students were able to 
focus on programming. In addition, the students 
connected their two robots according to their own 
ideas. The students used the command function to 
control the robot by specifying each movement of the 
robot as an action. In particular, to move the robot, it 
was given a command to forward, reverse, or change 
direction. To this end, the students identified a method 
of controlling the motor connected to the wheel. 
The mission to go through the maze continuously 
challenged the students to solve problems and made 
them feel as if they were the real drivers of the robot.
In the school bus class, the students created a school 
bus (robot) that could solve a problem in their local 

neighborhood. Students made a school bus and 
created a map that connected two schools and 
subway stations in the areas where they lived. 
Students created robots by adding their own ideas on 
top of the basic robot model they had experienced 
in the maze activities. The robot was programmed to 
drive on the road that they mapped. Figure 3 shows 
the robots and maps that were used in class.

This class consisted of 3 lesson stages per activity, and 
lasted for 80 minutes per lesson stage. In the first stage, 
the students analyzed problems and came up with 
ideas to address those problems. In the second stage, 
the algorithm was formulated and executed, which 
was accomplished by converting each algorithm into 
a program. The 3rd stage consisted of performing and 
reflecting algorithms. At this time, self-evaluation and 
mutual evaluation were conducted while observing 
the movement of the robot. Figure 4 presents the 
problem-solving structures of the maze escape and 
school bus classes.

Figure 2
Students’ Ideas for Escaping The Maze

Figure 3 
Students’ Outcomes: School Bus Robots and Students’ Maps
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Computational Concepts

To analyze the changes in computational concepts 
of the students who participated in the physical 
computing classes, we administered the UK Bebras 
Computational Challenge (2015) questionnaire before 
and after the class, and statistically analyzed the 
results. Each item on the questionnaire is based on 
five elements: abstraction, evaluation, generalization, 
decomposition, and algorithmic thinking of the 
computational concept. The computational concept 
test consists of a total of 15 questions, each of which 
are assigned one point; the maximum score is 15 
points. 

The computational concept test results revealed a 
difference between the pre- and post-intervention 
scores of -3.074 at p= .013, a statistically significant 

difference at p< .05 (see Table 5). In short, following the 
physical computing lesson, the students showed an 
improved understanding of computational concepts.

To fully understand the changes in the students’ 
computational concepts, we extracted scores for 
algorithmic thinking, abstraction, and decomposition, 
which are the elements of automation that scholars 
commonly highlight as core elements of computational 
thinking. Table 6 shows the components and difficulty 
of each item.

Among the problems with high difficulty level, on the 
robot painting problem, the students showed nearly 
twice the number of correct answers on the post-test 
vs. the pre-test. For the monster problem, they had 
more than double the number of correct answers 
on the post-test. The results showed that the physical 

Figure 4
Flow Charts: Maze Escape (Left) and School Bus (Right)

Table 5
Computational Concepts Test Results

M SD cases t p

Pre-test 8.80 2.485 10
-3.074 .013*

Post-test 10.10 2.514 10

* p< .05

Table 6
Computational Concepts: Algorithmic Thinking 

Problem level
Algorithmic 

thinking
Abstraction Decomposition

Testing results
Variation

Pre-test Post-test

Watering low • 10 10 0

Tic Tac Toe

middle

• • 10 10 0

Abacus • • • 8 9 +1

Village Network • • • 8 7 -1

Drawbot
high

• • • 3 5 +2

Monster • • • 3 7 +4
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computing lesson helped the students solve complex 
problems and discover and apply rules. This supports 
previous research showing that computational 
thinking generates the strategic knowledge that is 
necessary for problem solving (Bers, 2010), and that 
cognitive tasks related to computational thinking can 
be addressed through programming (Grover & Pea, 
2013). In particular, in the maze escape and school 
bus tasks in this study, the problem is to grasp the 
movement path of the robot; this task involves problem 
decomposition, algorithmic thinking, and abstraction.

Computational Practices

To identify the changes in the students’ computational 
practices that took place during the physical 
computing classes, we assessed changes in four 
areas: understanding and structuring the problem, 
exploring the problem-solving method, experiencing 
the algorithm, and understanding programming. The 
maximum score for each area on the computational 
practice test was 5 points. Figure 5 shows the students’ 
average computational practices scores.

In the area of comprehension of computational 
practices, the students showed higher average 
scores in understanding the problem, structuring the 
area, and programming in the school bus class than 
in the maze escape class. This is likely because the 
school bus class is based on material that directly 
relates to the students’ daily lives, so their scores rose 
in the area of problem understanding. In the area 
of understanding programming, the students were 
familiar with programming using commands because 
they understood the functions of each instruction 
through practice.

In contrast to the other two computational practice 
areas, in the areas of problem solving and algorithm 

experience, the mean score was lower in the school 
bus class than in the maze escape class. We took this 
to mean that the students could relate better to the 
school bus scenario, so it interested them more, but 
that developing actual bus routes was complicated, 
and the complex considerations made it difficult for 
the students to develop algorithms. Regarding the 
overall computational practice scores by class subject, 
the students had a higher average score, 9.43, in the 
school bus class than they did in the maze escape 
class, 9.22. Table 7 shows the individual students’ 
computational practice scores.

In the problem understanding and programming 
area, the students’ average score was higher in the 
school bus activity than in the maze escape activity. 
This may be because the students fully understood 
a need for a school bus, and the task was related to 
their everyday lives, so their scores increased in the 
problem understanding area. In addition, it seems 
that the functions and programming methods of 
each area of instruction gradually became more 
familiar with iterative programming. On the other 
hand, in the problem solving and algorithm area, the 
average score of the students in the school bus classes 
decreased. This seems to be because the situation 
became more complicated, so it was difficult to 
address it with an algorithm, despite the fact that the 
school bus problem is related to the students’ everyday 
lives and the students were interested in the problem. 

We conducted correlation analysis to analyze the 
relationship between students’ computational 
practice scores by subject and the computational 
practices they displayed in their interviews. The result 
was .863, which was statistically significant (p < 0.01). 
To analyze the relationship between computational 
practices and concepts, Pearson’s correlation 
analysis was conducted, which showed correlation 

Figure 5
Computational Practice Scores in Physical Computing Lessons
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coefficients of .758 (p< .05) for the pre-test and .877 
(p< .01) for the post-test. The correlation coefficient for 
computational practices (r= .711, p< .05) was statistically 
significant, indicating that, when conducted after the 
classes, interpersonal interviewing was effective. The 
post-test scores for computational concepts and the 
activities (r= .877, p< .01) and interviews (r= .711, p< .05) 
were all highly correlated. We found that, following the 
physical computing lessons, the students were able to 
demonstrate their understanding of computational 
practices in the class activities and in interviews.

Computational Perspectives

We used anecdotal records to evaluate the student’s 
perspectives on computing accidents (Brennan & 
Resnick, 2012; Brennan, Balchm & Chung, 2015). We 
asked students to rate their expression, collaboration, 
and use of robots and computing abilities with regard 
to robots and computing on Likert scales of 1 to 5 
for each item. Table 8 shows the students’ average 
scores for each item in each step, which were used 
to examine the changes in their computational 
perceptions.

Next, Figure 6 shows the students’ average scores. In 
terms of computational perspective, students who 

attended the physical computing lessons were able to 
use robots and computing to create something, to be 
aware of expressions, to collaborate with peers, and 
to solve problems.

We found it noteworthy that students’ expression 
increased in the actual experiential algorithm 
execution and reflection stages. In the problem analysis 
and “find ideas” stages, the expressing, collaborating, 
and use of robots and computing perspectives of the 
school bus class (#1) increase more than those of the 
maze escape class (#2). Our analysis shows that the 
process of finding problems and discussing ideas with 
friends leads to a change in computing perspective. 
In particular, presenting practical problems, such as 
those having to do with school buses, helps improve 
computational thinking, which is in line with previous 
work (Bers, 2010; CSTA, 2012; Wing, 2006). 

Pearson’s correlation analysis of the relationships 
between computational concepts and perspectives 
revealed no statistically significant results (p< .05). 
The correlation coefficient between computational 
perspectives and computational practice was .469, 
but this finding was not significant (p< .05). We found 
the relationships between the subdomains to be 
related to the students’ recognition of the expression 

Table 7
Individual Students’ Computational Practices Scores 

No
Maze Escape School Bus

PU* PS* A* P* Total PU* PS* A* P* Total

1 3.67 4.83 2.33 2 11.83 3.33 2.83 1.67 1.67 9.5

2 2 4 1.67 1 8.67 2.67 3.5 1.67 1.5 9.34

3 2 3 1.67 1.67 8.34 3.67 2.33 1 1 8

4 2 3.67 2.33 2.33 10.33 4 2.5 1.67 1.67 9.84

5 2 4.5 1.67 1 9.17 3 3.67 2.67 1.5 10.84

6 2 4.17 3 2.5 11.17 4 2.5 1.33 1 8.83

7 2.67 2 1 1 6.67 3 2 1.67 1.5 7.5

8 2 2 1.67 1 6.67 2.33 3 1.33 1.5 9.16

9 3.67 3.33 1 1 9 3.33 4.17 1.67 1.67 11.51

10 3 3.17 1.67 1 8.84 4 3.83 2.33 1.67 9.83

Mean 2.50 3.47 1.80 1.45 9.22 3.23 3.03 1.70 1.47 9.43

*PU: Understanding the problem & finding ideas, PS: Exploring to solve the problem, A: Play algorithm, P: Understanding programming.

Table 8
Average Computational Perspectives Scores 

                              Step
Activity

Analyze Problem & Find Ideas 
Formulate Algorithms & 

Play Algorithms A
Play Algorithms & 
Reflect Algorithms

E-1 C-1 U-1 E-2 C-2 U-2 E-3 C-3 U-3

#1: Maze escape 3.4 3.4 3.3 4 3.8 3.8 4.1 4.1 3.8

#2: School bus 4 4 3.9 3.5 3.5 3.7 3.9 4.1 4

Average score
Maze:  Expression (3.83), Collaboration (3.77), Use of robots and computing (3.3)

School bus: Expression (3.8), Collaboration (3.87), Use of robots and computing (3.87)

*E: Expression, C:Collaboration, U: Use of robots and computing
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of school buses and computational perspectives (r= 
.655, p< .05), and their perspectives of connections (r= 
.735, p< .05). In the school bus class, there was a strong 
correlation between the expression of computational 
perspectives and the perspectives of cooperation, 
given that the correlation coefficient was between 
.60 and .80.

In summary, the results of this study show that students 
who participated in physical computing lessons 
showed an improved understanding of computational 
concepts. In particular, the number of correct answers 
increased for the elements of algorithmic thinking, 
decomposition, and abstraction, including on items 
with high complexity. The overall average score for 
computational practices was higher after the school 
bus lesson, 9.43 points, than after the maze escape 
lesson, 9.22 points, indicating that the students’ overall 
computational practice comprehension improved. 
Students’ computational practices improved in both 
classes in terms of their understanding of problems, 
structures, and programming. The mean scores 
for problem-solving search area and algorithm 
experience were lower after the school bus lesson 
than the maze escape lesson. We interpreted this 
difference to reflect the fact that the school bus lesson 
introduced a complex real-life problem that students 
found difficult to solve, and we concluded that 
difficulty solving the problem influenced the students’ 
understanding of programming. 

In terms of computational perspectives, in the maze 
escape lesson, as the lesson progressed, scores related 
to expression, collaboration, and utilization increased. 
In contrast, in the school bus lesson, we found that the 
students had difficulty developing algorithms for the 
complicated bus route problem, and that this difficulty 
was reflected in their lower algorithm formatting and 
performance scores.

Conclusion

In this study, we developed and applied two sets of 
physical computing lessons for elementary school 
students in preparation for their imminent computing 
education. We measured the students’ computational 
thinking in terms of concepts, practices, and 
perspectives, not just cognitive aspects, in an effort 
to overcome previous researchers’ focus on only 
cognitive changes, such as changes in logical thinking 
(Lee, Cheon, & Kim, 2017), programming understanding 
(Resnick, 2006), and problem-solving ability (Kabátová 
& Pekárová, 2010; Son & Son, 2014).

This study has some limitations. For example, it 
targeted voluntary participants, only male students 
participated, and it was conducted with a small 
number of students (10). Thus, it is difficult to generalize 
the results of this study.

We found that the physical computing lessons 
supported problem decomposition, abstraction, 
and algorithmic representations that are covered 
in students’ computational concepts. In particular, 
the lessons provided an opportunity for students to 
compare and modify their own mental models and 
the real models they created for the experiments. 
The robot programming activities in which students 
participated during class helped to shape their 
computational concepts through computational 
practices. In addition, instructional activities that 
described how school buses move around schools 
and neighborhoods helped shape a problem in the 
students’ daily lives. This supports the abstraction, 
extraction, and expression of key information, thus 
helping students to distinguish important information 
from ancillary information, and thereby form 
computational concepts. This is also reflected in 
the current emphasis on providing opportunities to 

Figure 6
Computational Perspectives: Expression, Collaboration, and Use of Robots and Computing
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develop design in software education (Kim & Han, 
2012; Jeon & Han, 2016; Brennan, Balchm, & Chung, 
2015).

Second, the physical computing lesson facilitated the 
students’ computational thinking by supporting them 
in rendering their ideas into computing technology, 
while solving problems with hardware (robots) and 
software (programming). In addition, the action of 
formalizing algorithms was educational in terms 
of activating students’ mathematical expressions 
(symbols, texts, pictures, etc.). In particular, it was 
possible to utilize physical computing tools to support 
inquiry learning by enabling variable control and 
feedback (Reys, Lindquist, Lamdin & Smith, 2015).

Third, the problematic situations encountered by the 
students in these classes changed their computational 
perspectives and allowed the students’ active interest 
in the subjects to manifest. Students who took part 
in the physical computing classes recognized the 
necessity of cooperation when using robots to solve 
problems. This resulted in the emergence of active 
attitudes, such as actively learning the programming 
language and communicating their learning to other 
students. In fact, after the study, the students formed 
clubs and volunteered to conduct research on robots 
and coding.

This study has many educational implications. The 
factors that affect computational thinking can be 
identified by analyzing the patterns of computational 
concepts and perspectives that are revealed through 
computational practice. In particular, this study 
provides concrete implications of the use of physical 
computing lessons for elementary students, and has 
educational implications for teachers, researchers, 
and parents who will be conducting software 
education in the future.

Based on the results of this study, we suggest the 
following. First, considering that physical modeling and 
programming support the formation of computational 
concepts in physical computing lessons, it is necessary 
to develop computational practice activities so that 
students construct knowledge while constructing 
actual models. Second, when conducting software 
training, it is important to encourage an understanding 
of computational concepts, including problem 
resolution, abstraction, and algorithmic thinking, 
rather than focusing on automation. Considering 
that the students’ ideas and the ways in which they 
formed algorithms differed depending on how they 
perceived the problem, education on the abstraction 
phase that breaks down the problematic situation and 
emphasizes an understanding of the core concepts 
should be made a priority. Third, we conducted this 
study with only male students, and further study is 

needed to assess whether there might be gender 
differences in the results, particularly given that most 
of the male participants had related experience and 
a high degree of interest in the class subject.
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