
Copyright ©
www.iejee.com
ISSN: 1307-9298

© 2020 Published by KURA Education & Publish-
ing. This is an open access article under the CC
BY- NC- ND license. (https://creativecommons.
org/licenses/by/4.0/)

International Electronic Journal of Elementary Education
December 2020, Volume 13, Issue 2, 183-198

183

Developing Children’s
Computational Thinking through
Physical Computing Lessons

Sun Hee Mina, Min Kyeong Kim*,b

Received	 : 25 June 2020
Revised	 : 5 October 2020
Accepted	 : 22 December 2020
DOI 	 : 10.26822/iejee.2021.183

Abstract

Introduction

In this study, we designed and applied physical computing
lessons for elementary 6th-grade students based on the
software education guidelines in the Korean 2015 Revised
National Curriculum (Ministry of Education, 2015a). The
participants of this study were ten 6th-grade students of an
elementary school in Gyeonggi-do province in Korea. The
physical computing lessons used in this study supported the
active interaction of the digital world and the physical world
by constructing a physical model using specific media, and
controlling it with a program. In order to understand the
changes in the students’ computational thinking after the
class, we analyzed these changes in terms of computational
concept, computational practice, and computational
perception. Research has shown that physical computing
lessons materialize students’ computational concepts
through computational practices, and improve their
computational perspectives through the use of authentic
contexts. We expect that the physical computing lessons
and analysis tools developed through this study will provide
educational implications for future software education.

Computer science plays a vital role in today’s
technologically and globally connected world. Thus,

it is essential to introduce computing ideas to students
early in their schooling (Yadav, Hong, & Stephenson, 2016).
To prepare for this social change, countries such as the
United States, the UK, Australia, India, and Israel view
computational thinking as a key competency that future
generations should possess and be able to apply to various
subjects, such as mathematics and science (Ryu & Han,
2015). The school environment has a uniquely large impact
on future generations, as educators continuously prepare
their students for technology-driven futures (Griffths, Nash,
Maupin, & Mathur, 2020).

a Sun Hee Min. Department of Elementary
Education, Ewha Womans University, Seoul,
Korea.
E-mail: sunnym73@naver.com
ORCID: http://orcid.org/0000-0002-4715-8978

*,bCorresponding Author: Min Kyeong Kim.
Department of Elementary Education, Ewha
Womans University, Seoul, Korea.
E-mail: mkkim@ewha.ac.kr
ORCID: http://orcid.org/0000-0002-6788-9890

Keywords:
Computational Thinking, Computational Concepts,
Computational Practices, Computational Perspectives,
Physical Computing, Elementary Education

December 2020, Volume 13, Issue 2, 183-198

184

Papert (1996) first introduced the concept of
computational thinking, while Wing (2006) later
defined it as a fundamental ability that allows people
to design and think using the language of computation.
In other words, computational thinking involves
numerous skills, such as logical thinking, algorithm
selection, and systematic thinking, which can be used
to solve problems in a variety of learning contexts
and in daily life, not only in professional computer
science fields (Tsai, Wang, & Hsu, 2019). Denning (2005)
suggested that computational thinking today includes
the use of abstraction, mathematics for algorithmic
development, and efficient problem solving.

In this regard, the Korean Ministry of Education (MOE,
2015b) emphasizes the importance of software
education in the formal curriculum with the goal of
strengthening competence, including information
ethics and attitudes, while presenting computational
thinking as a key competency of software education.
For elementary school, the Ministry proposed
expanding and reorganizing the existing contents of
the Information and Communication Technologies
(ICT) application into basic software literacy education
(MOE, 2015a). Educational programming languages
have been applied to this end (Song & Gil, 2017; Shin
& Bae, 2015). Other tools include robots (Marion et
al., 2017) and various types of educational media as
physical computing tools (Alimisi, 2013; Bakke, 2013;
Chandra, 2010; Felica & Sharif, 2014; Kim & Kim, 2016;
Resnick, 2006).

Since 2019, software education has primarily been
taught in grades 5 to 6, and efforts are under way to
address the lack of learning time to cultivate the core
competencies of software education (Han, Cheong, &
Lee, 2017). To address the limited amount of available
class time, which is a significant problem facing those
who design computing lessons, some authors have
studied computing not solely as a practical subject
(Kim, 2015; Ryu & Han, 2015), but in relation to other
subjects, such as mathematics and social studies
(Shin, Cho, & Kim, 2013), as well as methods of applying
it to different creative activities (Kim, 2015; Kim, Kim, &
Ryu, 2013; Song, 2013). In addition, researchers have
designed educational programming languages, such
as Scratch and Entry, and various physical computing
tools and software to enable students to learn through
experience, considering the developmental level of
elementary school students (Anglei et al., 2016; Kim &
Lee, 2014)

Therefore, in order to implement software education,
it is necessary to study educational media and various
evaluation methods and to introduce different types
of content. In particular, because computational
thinking is emphasized as a core competency of
software education, research is needed on how

students express computational thinking, and how
they can be evaluated. However, considering the
limitations of approaching only the cognitive aspects
of computational thinking (Kim, 2009), or of evaluating
it as a learning output (Seiter & Foreman, 2013), it is
necessary to study various aspects of how students
understand computational concepts. For example,
students must not only know the concepts, but also find
the changes of computational concepts in practice.
This means approaching computational thinking as a
process of problem solving (Wiggns & McTighe, 2005;
Bers, 2010; CSTA, 2012; Denning, 2017; Wing, 2006), in
the sense that a concept is only meaningfully learned
when a student can use it to solve a unique problem.

To consider computational thinking in terms of the
harmony of thinking and computing technology, it
is necessary to examine students’ computational
concepts in actual computational practice. In
physical computing lessons, activities that explore
changes in behavior using programming and robots
are expected to help students shape computational
thinking through the harmonization of concepts and
practice by implementing students’ ideas through
computing technology. In addition, in order to
continuously demonstrate computational thinking, it
is necessary that students’ active attitudes change
through recognition conversion. Therefore, by
assessing changes in computational perspectives
in the classroom, we expect that this work will have
implications for strengthening the attitude and
capacity emphasized in software education. In
addition, the appropriate result can be benchmarked
against the relevance of ICT use within the wider
personal, cultural, social and psychological context of
a person’s daily life (Talaee & Noroozl, 2019).

Therefore, in this study, we aimed to analyze the
characteristics of computational thinking by designing
physical computing lessons and applying them to
elementary school students. In addition, we looked at
the changes and features in computational concepts,
computational practices, and computational
perspectives in order to examine various aspects of
computational thinking through physical computing
lessons. In order to support the development of
computational thinking, we provide concrete
instructional design and application for physical
computing lessons, implications for evaluation, and
ideas for follow-up research.

The following research questions guided this study:

1. How was the physical computational class
designed for elementary school students?

2. How did computational thinking appear to
elementary school students who experienced
the physical computing classes?

Developing Children’s Computational Thinking through Physical Computing Lessons / Min & Kim

185

Research Background

Physical Computing

For more than 30 years, constructionist tool kits,
robotics, and physical computing kits have been
present in educational contexts (Przybylla & Romeike,
2014). As Resnick (2007) observed, “In today’s rapidly
changing world, people must continually come up
with creative solutions to unexpected problems.
Success is based not only on what you know or how
much you know, but on your ability to think and act
creatively.” In this respect, the physical computing
tools that connect the digital world with the real
world are expected to provide students with creative
experiences for problem solving.

Physical computing covers the design and realization
of interactive objects and installations, and allows
students to develop concrete, tangible products that
arise from the learner’s imagination. This can be used
in computer science education to provide students
with interesting and motivating access to the different
topic areas of a subject in constructionist and creative
learning environments (Przybylla & Romeike, 2014).

The physical computing environment uses sensors
and actuators that can replace the human senses.
A microcontroller can be used as a learning medium
that is capable of robot programming (Kim & Kim, 2016;
Seo & Kim, 2016).

Physical computing tools can be divided into robot,
board, or modular types. In the case of robot type
tools, a physical output device, such as a motor, is
reinforced. Programming allows us to move robots
and control output devices, such as sounds or lights,
and if sensors are used, we can interact with the real
world, such as by following lines or avoiding obstacles.
Board type refers to electronic boards including
microcontrollers. Because it is necessary to understand
electric circuits and apply electronic knowledge, it
is not easy to apply this type of robotic learning in
elementary school classes.

Finally, modular type means that various input and
output devices are assembled, connected to a
microcontroller, and controlled using an educational
programming language. Ultimately, students will be
able to experience the process of designing, building,
and programming their own robots. The modular
type has the advantages of both robot type and
board type, and it can help give learners practical
experience, which can aid them in finding ideas and
solutions for real life problem solving.

The use-modify-create model (Lee et al., 2011), a
learning model for software education, emphasizes
learning by making through hands-on experience.
In particular, the authors of the model pointed out
that environments should encourage active learning
through play. The model also emphasizes that learners
should experience inventions, rather than imitations or
implementations of algorithms (Futscheck & Moschiz,
2010).

Physical computing takes computational concepts
into the real world, so students can use those concepts
in authentic environments. Physical computing
activities are strongly connected to the dimensions
of computational thinking, namely, abstraction,
algorithmic thinking, automation, decomposition,
debugging, and generalization (Psycharis et al.,
2017). Sometimes, digital making is also referred to
as tangible programming (or physical computing,
digital fabrication, or creation of graspable user
interfaces). Digital making is simultaneously a tangible
representation of digital CT that moves beyond
text-based computer programming and coding
(Kotopoulos et al., 2017).

Physical computing is a form of computing science
that is connected to the arts, which leaves a great
deal of room for creative work in the classroom.
Additionally, physical computing allows for various
connections to other STEM subjects; for example,
simulation of behavior relates to biology, collection
and analysis of measurements relates to physics, and
logical operations relate to mathematics (Schulz &
Pinkwart, 2015). Ongoing research aims to determine
the effects of physical computing on students in
computer science classes by investigating its impacts
on students’ motivation, creativity, constructionist
learning, learning success, growth in competences,
and understanding of computer science and
computing systems (Przybylla & Romeike. 2014).

Kabátová and Peárová (2010) suggested certain points
to consider when designing a class. For example,
activities with robotic models, programmable kits, and
toys are good opportunities to organize the lessons in
a constructionist way. The constructionist ideas and
principles (Papert, 1999; Rusk et al., 2008) we promote
in our lessons are:

- learning by doing, genuine achievement,
hard fun and playful learning, learning through
designing,

- technology as building material combined
with artistic materials, and

- taking time, freedom to make mistakes,
teamwork.

December 2020, Volume 13, Issue 2, 183-198

186

Taken together, physical computing that can take
advantage of tools, including board, modular,
and robotic type tools, can help students learn by
building physical systems that connect the physical
and computing worlds. Robotics exemplifies an
appropriate use of technology to create meaningful,
open-ended, problem-solving activities (Felica & Sharif,
2014). In addition, lessons that use physical computing
tools provide opportunities for students to understand
abstract concepts through realistic experiences,
support students in shaping their ideas, and facilitate
communication and the fostering of social skills.

Computational Thinking

Regarding computational thinking, Wing (2006)
outlined the basic skills necessary for all people
living in the 21st century, such as reading, writing,
computation, and using computing technology to
solve problems. She also emphasized that abstraction
and automation are key elements of computational
thinking. Computational thinking uses abstraction
and decomposition to attack a large, complex task
or design a large, complex system. Computational
thinking is a fundamental skill for everyone, not just
for computer scientists; and to reading, writing, and
arithmetic, we should add computational thinking to
every child’s analytical ability (Wing, 2008).

Bers (2010) defined computational thinking as a
type of analytical thinking that has many similarities
to mathematical thinking (e.g., problem solving),
engineering thinking (design and evaluation
processes), and scientific thinking (systematic
analysis). The term grew out of the pioneering
work of Papert and colleagues on design-based
constructionist programming environments; it refers to
ways of algorithmically solving problems, and to the
acquisition of technological fluency (Papert, 1980).

Yadav, Hong, and Stephenson (2016) emphasized the
importance of thinking to all students by suggesting
algorithms, abstraction, and automation as key
elements of computational thinking. The authors

also emphasized that teachers’ understanding of
computational thinking is essential for incorporating it
into the classroom environment.

The essence of computational thinking involves
breaking down complex problems into more familiar/
manageable sub-problems (problem decomposition),
using a sequence of steps (algorithms) to solve
problems, reviewing how the solution transfers to
similar problems (abstraction), and finally determining
if a computer can help more efficiently solve those
problems (automation). These computational thinking
steps are foundational to computer science, but
their power and utility extend far beyond any single
discipline. We believe that the computational thinking
ideas outlined in this paper are key to moving students
from merely being technology literate, to using
computational tools to solve problems and represent
knowledge. Developing teachers’ understanding of
computational thinking and highlighting connections
to their curricular context is key to successfully
embedding computational thinking in K-12 classrooms.
Tedre and Denning (2016) pointed out that CT as a
concept has been studied for a longer time than
suggested by Wing (2006), and it is necessary to
know about problems, ideas, and risks that have
already been solved during this history of CT. Also
they examined a number of threats to CT initiatives:
lack of ambition, dogmatism, knowing versus doing,
exaggerated claims, narrow views of computing,
overemphasis on formulation, and losing sight of
computational models.

Brennan and Resnick (2012) suggested a way of
approaching the three aspects of computational
thinking in a study using Scratch. Having articulated
the framework for computational thinking (concepts,
practices, and perspectives), they described
three approaches to assessing the development
of computational thinking in young people who
are engaging in design activities with Scratch.
Computational practices focus on the process of
thinking and learning, moving beyond what the
students are learning to how they are learning

Table 1
Strength and Limitations of Assessment Approaches

Approach Concepts Practices Perspectives

Approach #1:
Project Analysis

Presence of blocks indicates
conceptual encounters

N/A

N/A (possibly by extending
analysis to include other
website data, like com-
ments)

Approach #2:
Artifact-Based Interviews

Nuances of conceptual
understanding, but with
limited set of projects

Yes, based on own authentic
design experiences, but subject
to limitations of memory

Maybe, but hard to ask
directly

Approach #3:
Design Scenarios

Nuances and range of con-
ceptual understanding, but
externally selected projects

Yes, in real time and in a novel
situation, but externally selected
projects

Maybe, but hard to ask
directly

(Brennan & Resnick, 2012, p. 22)

Developing Children’s Computational Thinking through Physical Computing Lessons / Min & Kim

187

(Brennan & Resnick, 2012). Table 1 shows the limitations
of each method of analyzing computational thinking.

Alternatively, researchers have also conducted
studies on computational thinking in terms of subject
and problem solving. Weintrop, Beheshti, Horn, Orton,
Jona, Trouille and Wilensky (2016) discussed the
definition and characterization of computational
thinking in secondary mathematics in conjunction
with STEM education.

Methodology

Lesson Design

In this study, to assess students' practical understanding,
we analyzed computational thinking centering on the
computational practices that appeared in class. To
this end, a learning environment in which the students’
own ideas could be manifested was provided by
utilizing physical computing tools that support active
interaction between the physical and computing
environments.

In these physical computing lessons, the subject,
content, and evaluation method were designed
to teach the algorithms and programming areas
emphasized in the guidelines for software education
(Ministry of Education, 2015b) based on the use-
modify-create model of robots (Lee, Martin, Denner,
Coulter, Allen, Erickson et al., 2011).

Furthermore, the “Maze Escape” and “School Bus”
lessons were developed and applied in conjunction
with mathematics and social studies concepts. The
classes explored the core concepts, factual content,
and achievement skills of elementary school practical
art subjects. In order to develop the subjects of the
lessons, a preliminary study was conducted on four 5th
graders and twenty 5th – 6th graders over the course
of one year. In addition, whether real life application,
inquiry, enjoyment, and cooperation were possible
(Shin & Bae, 2014), and whether it was possible to
connect with different regions (Choi, Choi, Ahn, Hong,
& Jung, 2015) were all considered.

Participants

The subjects of this study were ten male 6th grade
elementary school students in Gyeonggi-do province,
Korea, who participated in the class voluntarily
after being informed of the purpose of this study in
advance. Before the students participated in the class,
a separate introductory session was used to explain
the purpose and contents of the study, and consent
forms were used to obtain the student’s and guardian’s

signatures. Physical computing lessons were held
every Friday for a total of six sessions, 80 minutes per
session; before each class started, 80 minutes of extra
time was provided to help students understand the
medium. The physical computing tool used LEGO
bricks to assemble the body of a robot.

Data Collection & Analysis

In this study, quantitative and qualitative data were
collected in order to analyze changes in students'
computational practices following physical computing
lessons. The main researcher participated in the
research, introduced class topics, and observed the
students’ problem solving process; she also played the
role of a teacher in assisting the study participants with
overcoming any difficulties experienced during the
physical computing lessons. In addition, the students’
normal teachers were encouraged to help with class
recording and collection of various materials. The
rubrics and test tools used in the research process were
revised and supplemented based on the results of the
preliminary study through consultations with experts
in elementary education and robotics education, and
elementary school teachers.

Data collection was carried out through a
computational concepts test conducted before
and after class, observation of class participation,
interviews, activity sheets, and anecdotal records. For
data analysis, quantitative and qualitative analyses
were performed using a hybrid research method to
grasp the computational thinking of students who
applied the physical computing lessons.

For the quantitative analysis, computational concepts
test scores, worksheets, and interviews conducted
using a computational practices rubric, as well as
data collected through anecdotal records, were
statistically analyzed. For the qualitative analysis, we
attempted to understand students’ computational
thinking processes by observing students'
participation in class, interviewing the students, and
analyzing outputs and activities. In addition, a single
case study was conducted to assess changes in
individual computational thinking, and we attempted
to explore certain aspects of computational thinking
in detail through individual examples of how
computational concepts, computational practices,
and computational perceptions appear in physical
computing lessons.

Assessment 1: Computational Concepts

The UK Bebras Computational Challenges (2015) is
an online competition open to students in the UK

December 2020, Volume 13, Issue 2, 183-198

188

and English-speaking international schools around
the world; it requires intelligence, but no previous
knowledge. The hope is that the competition will
increase youngsters’ general interest in computer
science and help them to understand that
computational thinking has far-reaching applications
in solving all sorts of life’s problems.

In the computational concepts test, a pre-test and
post-test were conducted using the same question;
no answer to the test question was provided. It was
conducted at 2-month intervals, including the class
time between the pre-test and post-test. To measure
computational concepts, the participating students
had 40 minutes to solve 15 questions. However,
when we scored their work, we did not use the
additional scoring rubric as required by the UK
Bebras Computational Challenges. Instead, correct
answers received 1 point, and incorrect answers
received no points (i.e., points were not deducted for
incorrect answers). The post-test Cronbach’s alpha for
computational concepts excluding items 3 and 9 was
.764.

Assessment 2: Computational Practices

To assess computational practices, we reconstructed
the relevant rubric based on the three areas of
experience—problem-solving, algorithm, and
programming—presented in the MOE’s Software
Education Guidelines (MOE, 2015b). We evaluated
the experiential domain of the problem-solving and
algorithmic processes using revised rubrics based on
Choi (2014) and Brennan, Balchm, and Chung (2015),
respectively. We reconstructed the programming
experience area by referring to the robot design
rubric of the For Inspiration & Recognition of Science &
Technology LEGO League (2015).

We also conducted interviews with the students
based on Brennan and Resnick’s (2012) observation
that it is difficult to evaluate computing practices
solely by analyzing output. The interview questions
gauged how students understood and structured
the problems, searched for solutions, and understood
the role of programming in class activities. Students
introduced their projects and explained their problem
solving methods and the ideas or people who helped
them. In addition, they explained the differences
between how to program, and how to apply and
explain the commands and solutions. To help students
remember, the interviewer used their own output as
an example. Table 2 shows some interview items that
were used to evaluate computational practices.

Based on the actual experiences of the students
themselves, we conducted two interviews using the
students’ outputs immediately after the end of each
activity topic, considering the limitation of memory.
We analyzed the reliability of the three graders in
the scoring of the students’ computational practices.
Table 3 presents the inter-scorer reliability, assessed
using Pearson’s correlation coefficient.

Assessment 3: Computational Perspectives

Brennan, Balchm, and Chung (2015) divided
computational perspectives into three areas:
expressing, connecting, and questioning. They
analyzed computational perspectives by looking at
students’ perspectives of physical computing lessons
(perspectives of expression, cooperation, and use).
For this study, an anecdotal record consisted of two
narrative questions and five multiple choice questions,
and students wrote anecdotes for each class.

Table 2
Interview Items for Evaluating Computational Practices

Strands Interview details

Understanding and structuring
the problem

Introduce your project.

Searching for problem solutions
How did you solve the problem? Did you have any ideas or people who helped you
solve the problem? Have you made any changes in today’s activity? Why did you fix it
like that? Describe how you tried to solve the problem.

Understanding programming
How did you program it to solve the problem? What commands did you use? Please
explain the commands used. Was there a difference between what you expected, and
what was real?

Table 3
Inter-Scorer Reliability: Computational Practices

Items Activity themes A–B A–C B–C

Worksheets
#1 Maze Escape .994** .797** .833**

#2 School Bus .748* .795** .808**

Interviews using outcomes Total .934** .911** .875**
** p < .01

Developing Children’s Computational Thinking through Physical Computing Lessons / Min & Kim

189

Results and Discussion

Physical Computing Lessons

We conducted each physical computing lesson three
times, centered on two themes, maze escape and
school bus. Based on the practical subjects of the
curriculum, which was last revised in 2015, the subjects
of mathematics and social studies were linked to
each other. We considered whether a topic was
explored, used in daily life, facilitated cooperation, or
caused pleasure (Shin & Bae, 2014), whether the use–
modify–create model (Lee, Martin, Denner, Coulter,
Allen, & Erickson, 2011) or the algorithmic invention
model (Futscheck & Moschiz, 2010) could be applied,
and whether the lesson could be connected with
the community (Choi et al., 2015). Table 4 shows the
contents of the lessons and activities conducted in this
study.

The main activity of the physical computing lessons
was to create and program robots; this allowed
students to invent algorithms through experience. First,
in the “Analyze problem” stage, the students identified
a problem and clarified that problem by analyzing
the given situation and conditions; at this point, the
students removed any unnecessary information from
consideration. Second, in the “Find ideas” stage, the
students collected data and generated various ideas
to identify the best ones; in addition, we constructed
robots, identified the properties of the media, and
collected ideas for problem solving. Third, in the
“Formulate algorithms” stage, we designed a method

of realizing an idea and designed a concrete process
that included a program to specify the necessary
algorithm. Fourth, in the “Play algorithms” stage, the
program was tested based on each algorithm. Fifth, in
the “Reflect algorithm” stage, problems were identified
and corrected while the results were evaluated.
Students checked their problem-solving processes
and algorithms to find and fix errors. They also shared
their results and conducted self- and peer evaluations
in order to objectively view their own output. The
students produced robots as a means of solving
problems by programming and experimenting in
teams of two. The students built and moved the robot
themselves, embodied their ideas with algorithms,
and debugged their programs through execution.
Real life-based problematic situations helped students
immerse themselves in the learning process, and
easy-to-edit robots and programming tools helped
students to check their ideas. Figure 1 shows the robot
and maze used in class.

Students observed the maze, moved like a robot, and
discussed their ideas with other students. In addition,
the discussion was organized using pictures, texts, and
symbols. Students acted like robots, extracting the
elements necessary for movement, understanding
problems, and finding ideas. Through this process, the
robot’s behavior was sequentially arranged, and each
algorithm was created. The students’ algorithms were
embodied through programming, and modified and
supplemented through practice. Figure 2 illustrates the
students’ ideas that allowed the robot to escape the
maze.

Table 4
Physical Computing Lessons: Contents and Activities

Lesson steps
Activity themes

#1. Maze Escape #2. School Bus

Analyze problems and find
ideas

Make robots using basic building instructions
Explore robot movement

Build a town map and school bus, share
ideas, and make a plan with peers

Formulate and play algorithms
Modify robots, get directions using robots,
programming, and testing

Recreate school bus, do programming
and test

Play and reflect algorithm Execute maze escape Optimize school bus movements

Figure 1
Students’ Robot and Maze Escape Activities

December 2020, Volume 13, Issue 2, 183-198

190

In the maze escape class, the students used a basic
type of robot to allow them to focus on algorithms and
programming strategies. In order to move through the
maze, the students modified the robot in their own
ways. The maze was divided into two stages, which
were delineated by a middle point and a final goal
point, so the students could solve the task step-by-
step. This activity used assembly diagrams to create
and test basic models, so the students were able to
focus on programming. In addition, the students
connected their two robots according to their own
ideas. The students used the command function to
control the robot by specifying each movement of the
robot as an action. In particular, to move the robot, it
was given a command to forward, reverse, or change
direction. To this end, the students identified a method
of controlling the motor connected to the wheel.
The mission to go through the maze continuously
challenged the students to solve problems and made
them feel as if they were the real drivers of the robot.
In the school bus class, the students created a school
bus (robot) that could solve a problem in their local

neighborhood. Students made a school bus and
created a map that connected two schools and
subway stations in the areas where they lived.
Students created robots by adding their own ideas on
top of the basic robot model they had experienced
in the maze activities. The robot was programmed to
drive on the road that they mapped. Figure 3 shows
the robots and maps that were used in class.

This class consisted of 3 lesson stages per activity, and
lasted for 80 minutes per lesson stage. In the first stage,
the students analyzed problems and came up with
ideas to address those problems. In the second stage,
the algorithm was formulated and executed, which
was accomplished by converting each algorithm into
a program. The 3rd stage consisted of performing and
reflecting algorithms. At this time, self-evaluation and
mutual evaluation were conducted while observing
the movement of the robot. Figure 4 presents the
problem-solving structures of the maze escape and
school bus classes.

Figure 2
Students’ Ideas for Escaping The Maze

Figure 3
Students’ Outcomes: School Bus Robots and Students’ Maps

Developing Children’s Computational Thinking through Physical Computing Lessons / Min & Kim

191

Computational Concepts

To analyze the changes in computational concepts
of the students who participated in the physical
computing classes, we administered the UK Bebras
Computational Challenge (2015) questionnaire before
and after the class, and statistically analyzed the
results. Each item on the questionnaire is based on
five elements: abstraction, evaluation, generalization,
decomposition, and algorithmic thinking of the
computational concept. The computational concept
test consists of a total of 15 questions, each of which
are assigned one point; the maximum score is 15
points.

The computational concept test results revealed a
difference between the pre- and post-intervention
scores of -3.074 at p= .013, a statistically significant

difference at p< .05 (see Table 5). In short, following the
physical computing lesson, the students showed an
improved understanding of computational concepts.

To fully understand the changes in the students’
computational concepts, we extracted scores for
algorithmic thinking, abstraction, and decomposition,
which are the elements of automation that scholars
commonly highlight as core elements of computational
thinking. Table 6 shows the components and difficulty
of each item.

Among the problems with high difficulty level, on the
robot painting problem, the students showed nearly
twice the number of correct answers on the post-test
vs. the pre-test. For the monster problem, they had
more than double the number of correct answers
on the post-test. The results showed that the physical

Figure 4
Flow Charts: Maze Escape (Left) and School Bus (Right)

Table 5
Computational Concepts Test Results

M SD cases t p

Pre-test 8.80 2.485 10
-3.074 .013*

Post-test 10.10 2.514 10

* p< .05

Table 6
Computational Concepts: Algorithmic Thinking

Problem level
Algorithmic

thinking
Abstraction Decomposition

Testing results
Variation

Pre-test Post-test

Watering low • 10 10 0

Tic Tac Toe

middle

• • 10 10 0

Abacus • • • 8 9 +1

Village Network • • • 8 7 -1

Drawbot
high

• • • 3 5 +2

Monster • • • 3 7 +4

December 2020, Volume 13, Issue 2, 183-198

192

computing lesson helped the students solve complex
problems and discover and apply rules. This supports
previous research showing that computational
thinking generates the strategic knowledge that is
necessary for problem solving (Bers, 2010), and that
cognitive tasks related to computational thinking can
be addressed through programming (Grover & Pea,
2013). In particular, in the maze escape and school
bus tasks in this study, the problem is to grasp the
movement path of the robot; this task involves problem
decomposition, algorithmic thinking, and abstraction.

Computational Practices

To identify the changes in the students’ computational
practices that took place during the physical
computing classes, we assessed changes in four
areas: understanding and structuring the problem,
exploring the problem-solving method, experiencing
the algorithm, and understanding programming. The
maximum score for each area on the computational
practice test was 5 points. Figure 5 shows the students’
average computational practices scores.

In the area of comprehension of computational
practices, the students showed higher average
scores in understanding the problem, structuring the
area, and programming in the school bus class than
in the maze escape class. This is likely because the
school bus class is based on material that directly
relates to the students’ daily lives, so their scores rose
in the area of problem understanding. In the area
of understanding programming, the students were
familiar with programming using commands because
they understood the functions of each instruction
through practice.

In contrast to the other two computational practice
areas, in the areas of problem solving and algorithm

experience, the mean score was lower in the school
bus class than in the maze escape class. We took this
to mean that the students could relate better to the
school bus scenario, so it interested them more, but
that developing actual bus routes was complicated,
and the complex considerations made it difficult for
the students to develop algorithms. Regarding the
overall computational practice scores by class subject,
the students had a higher average score, 9.43, in the
school bus class than they did in the maze escape
class, 9.22. Table 7 shows the individual students’
computational practice scores.

In the problem understanding and programming
area, the students’ average score was higher in the
school bus activity than in the maze escape activity.
This may be because the students fully understood
a need for a school bus, and the task was related to
their everyday lives, so their scores increased in the
problem understanding area. In addition, it seems
that the functions and programming methods of
each area of instruction gradually became more
familiar with iterative programming. On the other
hand, in the problem solving and algorithm area, the
average score of the students in the school bus classes
decreased. This seems to be because the situation
became more complicated, so it was difficult to
address it with an algorithm, despite the fact that the
school bus problem is related to the students’ everyday
lives and the students were interested in the problem.

We conducted correlation analysis to analyze the
relationship between students’ computational
practice scores by subject and the computational
practices they displayed in their interviews. The result
was .863, which was statistically significant (p < 0.01).
To analyze the relationship between computational
practices and concepts, Pearson’s correlation
analysis was conducted, which showed correlation

Figure 5
Computational Practice Scores in Physical Computing Lessons

Developing Children’s Computational Thinking through Physical Computing Lessons / Min & Kim

193

coefficients of .758 (p< .05) for the pre-test and .877
(p< .01) for the post-test. The correlation coefficient for
computational practices (r= .711, p< .05) was statistically
significant, indicating that, when conducted after the
classes, interpersonal interviewing was effective. The
post-test scores for computational concepts and the
activities (r= .877, p< .01) and interviews (r= .711, p< .05)
were all highly correlated. We found that, following the
physical computing lessons, the students were able to
demonstrate their understanding of computational
practices in the class activities and in interviews.

Computational Perspectives

We used anecdotal records to evaluate the student’s
perspectives on computing accidents (Brennan &
Resnick, 2012; Brennan, Balchm & Chung, 2015). We
asked students to rate their expression, collaboration,
and use of robots and computing abilities with regard
to robots and computing on Likert scales of 1 to 5
for each item. Table 8 shows the students’ average
scores for each item in each step, which were used
to examine the changes in their computational
perceptions.

Next, Figure 6 shows the students’ average scores. In
terms of computational perspective, students who

attended the physical computing lessons were able to
use robots and computing to create something, to be
aware of expressions, to collaborate with peers, and
to solve problems.

We found it noteworthy that students’ expression
increased in the actual experiential algorithm
execution and reflection stages. In the problem analysis
and “find ideas” stages, the expressing, collaborating,
and use of robots and computing perspectives of the
school bus class (#1) increase more than those of the
maze escape class (#2). Our analysis shows that the
process of finding problems and discussing ideas with
friends leads to a change in computing perspective.
In particular, presenting practical problems, such as
those having to do with school buses, helps improve
computational thinking, which is in line with previous
work (Bers, 2010; CSTA, 2012; Wing, 2006).

Pearson’s correlation analysis of the relationships
between computational concepts and perspectives
revealed no statistically significant results (p< .05).
The correlation coefficient between computational
perspectives and computational practice was .469,
but this finding was not significant (p< .05). We found
the relationships between the subdomains to be
related to the students’ recognition of the expression

Table 7
Individual Students’ Computational Practices Scores

No
Maze Escape School Bus

PU* PS* A* P* Total PU* PS* A* P* Total

1 3.67 4.83 2.33 2 11.83 3.33 2.83 1.67 1.67 9.5

2 2 4 1.67 1 8.67 2.67 3.5 1.67 1.5 9.34

3 2 3 1.67 1.67 8.34 3.67 2.33 1 1 8

4 2 3.67 2.33 2.33 10.33 4 2.5 1.67 1.67 9.84

5 2 4.5 1.67 1 9.17 3 3.67 2.67 1.5 10.84

6 2 4.17 3 2.5 11.17 4 2.5 1.33 1 8.83

7 2.67 2 1 1 6.67 3 2 1.67 1.5 7.5

8 2 2 1.67 1 6.67 2.33 3 1.33 1.5 9.16

9 3.67 3.33 1 1 9 3.33 4.17 1.67 1.67 11.51

10 3 3.17 1.67 1 8.84 4 3.83 2.33 1.67 9.83

Mean 2.50 3.47 1.80 1.45 9.22 3.23 3.03 1.70 1.47 9.43

*PU: Understanding the problem & finding ideas, PS: Exploring to solve the problem, A: Play algorithm, P: Understanding programming.

Table 8
Average Computational Perspectives Scores

 Step
Activity

Analyze Problem & Find Ideas
Formulate Algorithms &

Play Algorithms A
Play Algorithms &
Reflect Algorithms

E-1 C-1 U-1 E-2 C-2 U-2 E-3 C-3 U-3

#1: Maze escape 3.4 3.4 3.3 4 3.8 3.8 4.1 4.1 3.8

#2: School bus 4 4 3.9 3.5 3.5 3.7 3.9 4.1 4

Average score
Maze: Expression (3.83), Collaboration (3.77), Use of robots and computing (3.3)

School bus: Expression (3.8), Collaboration (3.87), Use of robots and computing (3.87)

*E: Expression, C:Collaboration, U: Use of robots and computing

December 2020, Volume 13, Issue 2, 183-198

194

of school buses and computational perspectives (r=
.655, p< .05), and their perspectives of connections (r=
.735, p< .05). In the school bus class, there was a strong
correlation between the expression of computational
perspectives and the perspectives of cooperation,
given that the correlation coefficient was between
.60 and .80.

In summary, the results of this study show that students
who participated in physical computing lessons
showed an improved understanding of computational
concepts. In particular, the number of correct answers
increased for the elements of algorithmic thinking,
decomposition, and abstraction, including on items
with high complexity. The overall average score for
computational practices was higher after the school
bus lesson, 9.43 points, than after the maze escape
lesson, 9.22 points, indicating that the students’ overall
computational practice comprehension improved.
Students’ computational practices improved in both
classes in terms of their understanding of problems,
structures, and programming. The mean scores
for problem-solving search area and algorithm
experience were lower after the school bus lesson
than the maze escape lesson. We interpreted this
difference to reflect the fact that the school bus lesson
introduced a complex real-life problem that students
found difficult to solve, and we concluded that
difficulty solving the problem influenced the students’
understanding of programming.

In terms of computational perspectives, in the maze
escape lesson, as the lesson progressed, scores related
to expression, collaboration, and utilization increased.
In contrast, in the school bus lesson, we found that the
students had difficulty developing algorithms for the
complicated bus route problem, and that this difficulty
was reflected in their lower algorithm formatting and
performance scores.

Conclusion

In this study, we developed and applied two sets of
physical computing lessons for elementary school
students in preparation for their imminent computing
education. We measured the students’ computational
thinking in terms of concepts, practices, and
perspectives, not just cognitive aspects, in an effort
to overcome previous researchers’ focus on only
cognitive changes, such as changes in logical thinking
(Lee, Cheon, & Kim, 2017), programming understanding
(Resnick, 2006), and problem-solving ability (Kabátová
& Pekárová, 2010; Son & Son, 2014).

This study has some limitations. For example, it
targeted voluntary participants, only male students
participated, and it was conducted with a small
number of students (10). Thus, it is difficult to generalize
the results of this study.

We found that the physical computing lessons
supported problem decomposition, abstraction,
and algorithmic representations that are covered
in students’ computational concepts. In particular,
the lessons provided an opportunity for students to
compare and modify their own mental models and
the real models they created for the experiments.
The robot programming activities in which students
participated during class helped to shape their
computational concepts through computational
practices. In addition, instructional activities that
described how school buses move around schools
and neighborhoods helped shape a problem in the
students’ daily lives. This supports the abstraction,
extraction, and expression of key information, thus
helping students to distinguish important information
from ancillary information, and thereby form
computational concepts. This is also reflected in
the current emphasis on providing opportunities to

Figure 6
Computational Perspectives: Expression, Collaboration, and Use of Robots and Computing

Developing Children’s Computational Thinking through Physical Computing Lessons / Min & Kim

195

develop design in software education (Kim & Han,
2012; Jeon & Han, 2016; Brennan, Balchm, & Chung,
2015).

Second, the physical computing lesson facilitated the
students’ computational thinking by supporting them
in rendering their ideas into computing technology,
while solving problems with hardware (robots) and
software (programming). In addition, the action of
formalizing algorithms was educational in terms
of activating students’ mathematical expressions
(symbols, texts, pictures, etc.). In particular, it was
possible to utilize physical computing tools to support
inquiry learning by enabling variable control and
feedback (Reys, Lindquist, Lamdin & Smith, 2015).

Third, the problematic situations encountered by the
students in these classes changed their computational
perspectives and allowed the students’ active interest
in the subjects to manifest. Students who took part
in the physical computing classes recognized the
necessity of cooperation when using robots to solve
problems. This resulted in the emergence of active
attitudes, such as actively learning the programming
language and communicating their learning to other
students. In fact, after the study, the students formed
clubs and volunteered to conduct research on robots
and coding.

This study has many educational implications. The
factors that affect computational thinking can be
identified by analyzing the patterns of computational
concepts and perspectives that are revealed through
computational practice. In particular, this study
provides concrete implications of the use of physical
computing lessons for elementary students, and has
educational implications for teachers, researchers,
and parents who will be conducting software
education in the future.

Based on the results of this study, we suggest the
following. First, considering that physical modeling and
programming support the formation of computational
concepts in physical computing lessons, it is necessary
to develop computational practice activities so that
students construct knowledge while constructing
actual models. Second, when conducting software
training, it is important to encourage an understanding
of computational concepts, including problem
resolution, abstraction, and algorithmic thinking,
rather than focusing on automation. Considering
that the students’ ideas and the ways in which they
formed algorithms differed depending on how they
perceived the problem, education on the abstraction
phase that breaks down the problematic situation and
emphasizes an understanding of the core concepts
should be made a priority. Third, we conducted this
study with only male students, and further study is

needed to assess whether there might be gender
differences in the results, particularly given that most
of the male participants had related experience and
a high degree of interest in the class subject.

Conflicts of Interest

The authors declare that they have no conflicts of
interest.

Acknowledgement

This study was based on parts of a dissertation title,
‘A study on development and application of physical
computing lessons to promote computational thinking
in elementary school students’ by the first author.

References

Alimisis, D. (2013). Educational robotics: Open questions
and new challenge. Themes in Science &
Technology Education, 6(1), 63-71.

Anglei, C., Voot, J., Fluck, A., Webb, M., Cox, M.,
Maiyn-Smith, J., & & Zagami, J. (2016). A K-6
computational thinking curriculum framework:
Implications for teacher knowledge.
Educational Technology & Society, 19(3), 47-57.

Bakke, C. K. (2013). Perceptions of professional and

educational skills learning opportunities made
available through K-12 robotics programming
(Unpublished doctoral dissertation). University
of Capella.

Bebras Computational Challenges Recommended
by UK Bebras Challenges (2015). Retrieved from
http://bebras.uk

Bers, M. U. (2010). The tangible robotics program:
Applied computational thinking for young
children. Early Childhood Research & Practice,
12(2), 1-19.

Brennan, K., & Resnick, M. (2012). Using artifact-
based interviews to study the development of
computational thinking in interactive media
design. Paper presented at annual American
Educational Research Association meeting,
Vancouver, Canada.

Chandra, V. (2010). Teaching and learning
mathematics with robotics in middle-year of
schooling. Paper presented at the envision the
future: The role of curriculum materials and
learning environments in educational reform.
Hualien, Taiwan.

December 2020, Volume 13, Issue 2, 183-198

196

Choi, D. H., Choi, S. H., Ahn, J. J., Hong, H. J., & Jung, G. C.
(2015). Education for Sustainable Development
(ESD) by teachers’ doing: Working with future
generation. Seoul: UNESCO.

Choi, H. S. (2014). Developing lessons and rubrics to

promote computational thinking. Journal of The
Korean Association of Information Education,
18(1), 57-64.

Computational Thinking recommended by Computer
Science Teachers Association (2012). Retrieved
from https://www.csteachers.org

Creative Computing recommended by Brennan, K.,
Balchm, C., & Chung, M (2015). Retrieved from
http://scratched.gse.harvard.edu/guide/

Denning. P. (2009). The profession on IT: Beyond
computational thinking. Communications of
the ACM, 52(6), 28-30. Retrieved from http://doi.
org/10.1145/1516046.1516054

Denning. P. (2017). Computational thinking in science.
American Scientist, 105(1), 13-17. Retrieved from
http://doi.org/10.1511/2017.124

Felica, A., & Sharif, S. (2014). A review on educational
robotics as assistive tools for learning
mathematics. International Journal of
Computer Science Trends and Technology, 2(2),
62-84.

For Inspiration & Recognition of Science & Technology
LEGO League (2015). Retrieved from https://
www.firstlegoleague.org/

Futscheck, G., & Moschitz, J. (2010). Developing
algorithmic thinking by inventing and playing
Algorithms. Constructionism, 1-10.

Griffths, A. j., Nash, A.M., Maupin, A., & Mathur, S. K.
(2020). Her voice: Engaging and preparing
girls with disabilities for science, technology,
engineering, and math careers. International
Electronic Journal of Elementary Education,
12(3), 293-301.

Grover, S., & Pea, R. (2013). Computational thinking in
K-12: Review of the state of the field. Educational
Researcher, 42(1), 38-43.

Han, J. M., Jung, U. R., & Lee, Y. J. (2017). Analysis on
research trends related computational thinking
in Korea. The Korean Association of Information
Education: Summer Conference, 21(2), 3-5.

Jeon, S. J., & Han, S. K. (2016). Development of
UMC teaching and learning strategy for
computational thinking. Journal of The Korean
Association of Information Education, 20(2), 131-
138.

Kabátová, M., & Peárová, J. (2010). Learning how to
teach robotics. Constructionism, 1-8.

Kim, D. J., Kim, S. H., & Ryu, H. C. (2013). STEAM
educational outreach program based on
physical computing. Journal of The Korean
Association of Information Education, 17(2). 279-
283.

Kim, J. H. (2009). Secondary education program for
problem-solving ability based on computational
thinking (Unpublished doctoral dissertation).
Korea University, Seoul.

Kim, J. H., & Kim, D. H. (2016). Development of physical

computing curriculum in elementary school for
computational thinking. Journal of The Korean
Association of Information Education, 20(1), 69-
82.

Kim, K. S. (2017). An analysis of software curriculum
of Korean elementary teacher education
school. Journal of The Korean Association of
Information Education, 21(6), 723-732.

Kim, M. J., & Lee, T. W. (2014). Development of the
software educational program using LEGO
WEDO. Journal of The Korean Association of
Information Education, 18(2), 37-40.

Kim, S. H., & Han, S. K. (2012). Design-based learning for
computational thinking. Journal of The Korean
Association of Information Education, 16(3), 319-
326.

Kim, T. H. (2015). STEAM education program based on
programing to improve computational thinking
ability (Unpublished doctoral dissertation). Jeju
University, Jeju.

Kotopoulos, D., Flyod, L., Khan, S., Namukase, I. K.,
Somanath, S., Weber, J., & Yiu, C. (2017). A
pedagogical framework for computational
thinking: Mathematics and programming.
Retrieved from http://doi.org/10.100/s40751-017-
0031-2

Lee, I., Martin, F., Denner, J., Coulter, B., Allen, W.,
Erickson, J., Malyn-Smith, J., & Wener, L. (2011).
Computational thinking for youth in practice.
Association for Computing Machinery, 2(1), 32-
37.

Developing Children’s Computational Thinking through Physical Computing Lessons / Min & Kim

197

Lee, Y. J., Jeon, H. G., & Kim Y. S. (2017). Development
and applyment selection standards of physical
computing teaching aids for elementary
SW education according to the 2015 revised
curriculum. Journal of The Korean Association
of Information Education, 21(4), 437-450.

Marion, P., Deits, R., Valenzuela, A., d’Arpino, C. P., Izatt,
G., Manuelli, L., Antone, M., Koolen, T., Carter, J.,
Fallon, M., Kuindersma, S., & Tedrake, R. (2017).
Director: A user interface designed for robot
operation with shared autonomy. Journal of
Field Robotics, 34(2), 262-280.

Ministry of Education (2015a). 2015 Revision curriculum.
Korea.

Ministry of Education (2015b). Activation plan for SW
education in K-12. Korea.

Papert, S. (1980). Mindstorms: children, computer and
powerful ideas. Basic Books.

Papert, S. (1996). An exploration in the space of
mathematics educations. International Journal
of Computers for Mathematical Learning, 1(1),
95-123.

Papert, S. (1999). Ghost in the Machine. ZineZone.com
interview on how computers fundamentally
change the way kids learn. Retrieved from http://
www.papert.org/articles/GhostInTheMachine.
html\

Resnick, M. (2006). Computer as pain brush: Technology,
play, and the creative society. Play=learning:
How play motivates and enhances children’s
cognitive and social-emotional growth, 192-208.

Resenick, M. (2007). Sowing the seeds for a more
creative society. Learning & Leading with
Technology, 18–22.

Przybylla, M., & Romeike, R. (2014). Physical computing
and its scope – Towards a constructionist
computer science curriculum with physical
computing. Informatics in Education, 13(2), 241-
254.

Psycharis, S., Kalovrektic, K., Sakellaridi, E., Korres,

K., & Mastorodimos, D. (2017). Unfolding the
curriculum: Physical computing, computational
thinking and computational experiment in
STEM’s transpupillary approach. European
Journal of Engineering Research and Science,
Special Issue: CIE 2017, 19-24.

Reys, R. E., Lindquist, M. M., Lamdin, D. V., & Smith, N. L.
(2015). Helping children learn mathematics (11th
edition). John Wiley & Sons.

Rusk, N., Resnick, M., Berg, R., & Pezalla-Granlund, M.
(2008). New pathways into robotics: Strategies
for broadening participation. Journal of
Science Education and Technology, 17(1), 59-69.

Ryu, M. Y., & Han, S. K. (2015). Development of
computational thinking-based educational
program for SW education. Journal of Korean
Association of Information Education, 19(1), 11-
20.

Schulz, S., & Pinkwart, N. (2015). Physical computing in
stem education. In Proceedings of the Workshop
in Primary and Secondary Computing
Education (pp. 134-135). ACM.

Seiter, L., & Foreman, B. (2013). Modeling the learning
progressions of computational thinking of
primary grade students. In Proceeding of the
Ninth Annual International Association for
Computing Machinery Conference (pp. 59-66).
ACM.

Seo, J. H., & Kim, Y. S. (2016). Development and
application of educational contents for
software education based on the integrative
production for increasing the IT competence
of elementary students. Journal of Korean
Association of Information Education, 20(4), 357-
366.

Shin, S. K., & Bae, Y. K. (2014). Analysis and implication
about elementary computer education in India.
Journal of the Korea Association Education,
18(4), 585-594.

Shin, S. K., & Bae, Y. K. (2015). A study on the hierarchical
instructional system design of software
education by school system. Journal of the
Korea Association Education, 19(4), 533-544.

Shin, S. Y., Cho, H. K., & Kim, M. R. (2013). A curriculum
development on the robot literacy related with
a mathematics and science curriculum for
elementary and secondary school students.
Journal of The Korean Association of Information
Education, 16(6), 55-70.

Son, K. H., & Son, W. S. (2014). The development
and application to computer programming
education using Arduino. The Journal of
Education, 34(3), 169-179.

December 2020, Volume 13, Issue 2, 183-198

198

Song, U. S. (2013). Development of robot education
program for pre-service elementary teachers
using educational robot and its application.
Journal of Digital Contents Society, 14(3), 333-
341.

Song, U. S., & Gil, J. M. (2017). Development and
application of software education program
based on blended learning for improving
computational thinking of pre-service
elementary teachers. KIPS Tr. Software and
Data Eng, 6(7), 353-360.

Talaee, E., & Noroozl, O. (2019). Re-conceptualization of
“Digital Divide” among primary school; children
in an Era of saturated access to technology.
International Electronic Journal of Elementary
Education, 12(1), 27-35.

Tedre, M., & Denning, P. J. (2016). The long quest for
computational thinking. In Proceedings of the
16th Koli Calling Conference on Computing
Education Research (Koli, Finland, Nov. 24–27,
2016), 120–129.

Tsai, M. J., Wang, C. Y., & Hsu. P. F. (2019). Developing
the computer programming self-efficacy scale
for computer literacy education. Journal of
Education Computing Research, 56(8), 1345-
1360.

Yadav, A., Hong, H., & Stephenson, C. (2016).
Computational thinking for all: Pedagogical
approaches to embedding 21st century
problem solving in K-12 classrooms. TechTrends,
60(6), 565-568.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona,
K., Trouille, L., & Wilensky, U. (2016). Defining
computational thinking for mathematics
and science classrooms. Journal of Science
Education and Technology, 25(1), 127-147.

Wiggns, G., & McTighe, J. (2005). Understanding by
design. ASCD.

Wing, J. M. (2006). Computational thinking.
Communications of the Association for
Computing Machinery, 19(3), 33-35.

Wing, J. M. (2008). Computational thinking and thinking
about computing. Philosophical Transactions of
the Royal Society, 366, 317-3725.

